Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

Friedrichs, S., & Lenzen, C. (2015). Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford. Retrieved from http://arxiv.org/abs/1509.09047.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier
Latex : Parallel Metric Tree Embedding based on an Algebraic View on {Moore}-{Bellman}-{Ford}

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1509.09047.pdf (Preprint), 431KB
Name:
arXiv:1509.09047.pdf
Beschreibung:
File downloaded from arXiv at 2016-01-08 15:40
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Friedrichs, Stephan1, Autor           
Lenzen, Christoph1, Autor           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Distributed, Parallel, and Cluster Computing, cs.DC
 Zusammenfassung: A \emph{metric tree embedding} of expected \emph{stretch $\alpha$} maps a weighted $n$-node graph $G = (V, E, \omega)$ to a weighted tree $T = (V_T, E_T, \omega_T)$ with $V \subseteq V_T$ such that $\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T)$ and $\E[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G)$ for all $v, w \in V$. Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel $\operatorname{polylog} n$ depth algorithm that achieves an asymptotically optimal expected stretch of $\alpha \in \operatorname{O}(\log n)$ requires $\operatorname{\Omega}(n^2)$ work and requires a metric as input. In this paper, we show how to achieve the same guarantees using $\operatorname{\tilde{O}}(m^{1+\epsilon})$ work, where $m$ is the number of edges of $G$ and $\epsilon > 0$ is an arbitrarily small constant. Moreover, one may reduce the work further to $\operatorname{\tilde{O}}(m + n^{1+\epsilon})$, at the expense of increasing the expected stretch $\alpha$ to $\operatorname{O}(\epsilon^{-1} \log n)$. Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-flavored" algorithms, to be of independent interest.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-09-302015-10-202015
 Publikationsstatus: Online veröffentlicht
 Seiten: 36 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1509.09047
URI: http://arxiv.org/abs/1509.09047
BibTex Citekey: FriedrichsLenzen2015
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: