Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Inference of a mesoscopic population model from population spike trains

René, A., Longtin, A., & Macke, J. H. (2019). Inference of a mesoscopic population model from population spike trains. arXiv, q-bio, arXiv:1910.01618.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1910.01618.pdf (Preprint), 7MB
Name:
1910.01618.pdf
Beschreibung:
version 2
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://arxiv.org/abs/1910.01618 (Ergänzendes Material)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
René, Alexandre1, Autor
Longtin, André2, Autor
Macke, Jakob H1, Autor           
Affiliations:
1Max Planck Research Group Neural Systems Analysis, Center of Advanced European Studies and Research (caesar), Max Planck Society, ou_2173683              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Neurons and Cognition (q-bio.NC); Machine Learning (cs.LG); Machine Learning (stat.ML)
 Zusammenfassung: To understand how rich dynamics emerge in neural populations, we require models exhibiting a wide range of activity patterns while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single neuron scale to empirical population data. To close this gap, we propose to fit such data at a meso scale, using a mechanistic but low-dimensional and hence statistically tractable model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous `pools' of neurons, and modelling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to either optimize parameters by gradient ascent on the log-likelihood, or to perform Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. We illustrate this approach using a model of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived, and show that both single-neuron and connectivity parameters can be recovered from simulated data. In particular, our inference method extracts posterior correlations between model parameters, which define parameter subsets able to reproduce the data. We compute the Bayesian posterior for combinations of parameters using MCMC sampling and investigate how the approximations inherent to a mesoscopic population model impact the accuracy of the inferred single-neuron parameters.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-03-082019-10-032019-10-03
 Publikationsstatus: Online veröffentlicht
 Seiten: 48
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Keine Begutachtung
 Identifikatoren: arXiv: 1910.01618
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: arXiv, q-bio
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: arXiv:1910.01618 Start- / Endseite: - Identifikator: -