Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Carbon monoxide formation and cooling in supernovae

Liljegren, S., Jerkstrand, A., & Grumer, J. (2020). Carbon monoxide formation and cooling in supernovae. Astronomy and Astrophysics, 642: A135. doi:10.1051/0004-6361/202038116.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Carbon monoxide formation and cooling in supernovae.pdf (beliebiger Volltext), 488KB
 
Datei-Permalink:
-
Name:
Carbon monoxide formation and cooling in supernovae.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liljegren, S., Autor
Jerkstrand, A.1, Autor           
Grumer, J., Autor
Affiliations:
1Stellar Astrophysics, MPI for Astrophysics, Max Planck Society, ou_159882              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Context. The inclusion of molecular physics is an important piece that tends to be missing from the puzzle when modeling the spectra of supernovae (SNe). Molecules have both a direct impact on the spectra, particularly in the infrared, and an indirect one as a result of their influence on certain physical conditions, such as temperature.
Aims. In this paper, we aim to investigate molecular formation and non-local thermodynamic equilibrium (NLTE) cooling, with a particular focus on CO, the most commonly detected molecule in supernovae. We also aim to determine the dependency of supernova chemistry on physical parameters and the relative sensitivity to rate uncertainties.
Methods. We implemented a chemical kinetic description of the destruction and formation of molecules into the SN spectral synthesis code SUMO. In addition, selected molecules were coupled into the full NLTE level population framework and, thus, we incorporated molecular NLTE cooling into the temperature equation. We produced a test model of the CO formation in SN 1987A between 150 and 600 days and investigated the sensitivity of the resulting molecular masses to the input parameters.
Results. We find that there is a close inter-dependency between the thermal evolution and the amount of CO formed, mainly through an important temperature-sensitive CO destruction process with O+. After a few hundred days, CO completely dominates the cooling of the oxygen-carbon zone of the supernova which, therefore, contributes little optical emission. The uncertainty of the calculated CO mass scales approximately linearly with the typical uncertainty factor for individual rates. We demonstrate how molecular masses can potentially be used to constrain various physical parameters of the supernova.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-10-13
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1051/0004-6361/202038116
Anderer: LOCALID: 3278971
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Astronomy and Astrophysics
  Andere : Astron. Astrophys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: France : EDP Sciences S A
Seiten: - Band / Heft: 642 Artikelnummer: A135 Start- / Endseite: - Identifikator: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1