English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Mechanical Vibrations of Atomically Defined Metal Clusters: From Nano- to Molecular-Size Oscillators

Maioli, P., Stoll, T., Sauceda, H. E., Valencia, I., Demessence, A., Bertorelle, F., et al. (2018). Mechanical Vibrations of Atomically Defined Metal Clusters: From Nano- to Molecular-Size Oscillators. Nano Letters, 18(11), 6842-6849. doi:10.1021/acs.nanolett.8b02717.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Maioli, Paolo1, Author
Stoll, Tatjana1, 2, Author
Sauceda, Huziel E.3, Author           
Valencia, Israel4, Author
Demessence, Aude5, Author
Bertorelle, Franck1, Author
Crut, Aurélien1, Author
Vallée, Fabrice1, Author
Garzón, Ignacio L.6, Author
Cerullo, Giulio2, Author
Del Fatti, Natalia1, Author
Affiliations:
1Institut Lumière Matière, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France, ou_persistent22              
2Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza L. da Vinci 32, I-20133 Milano, Italy, ou_persistent22              
3Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
4Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, 54090 Tlanepantla, Estado de México México, ou_persistent22              
5Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), Université de Lyon, CNRS, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France, ou_persistent22              
6Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, México, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Acoustic vibrations of small nanoparticles are still ruled by continuum mechanics laws down to diameters of a few nanometers. The elastic behavior at lower sizes (<1–2 nm), where nanoparticles become molecular clusters made by few tens to few atoms, is still little explored. The question remains to which extent the transition from small continuous-mass solids to discrete-atom molecular clusters affects their specific low-frequency vibrational modes, whose period is classically expected to linearly scale with diameter. Here, we investigate experimentally by ultrafast time-resolved optical spectroscopy the acoustic response of atomically defined ligand-protected metal clusters Aun(SR)m with a number n of atoms ranging from 10 to 102 (0.5–1.5 nm diameter range). Two periods, corresponding to fundamental breathing- and quadrupolar-like acoustic modes, are detected, with the latter scaling linearly with cluster diameters and the former taking a constant value. Theoretical calculations based on density functional theory (DFT) predict in the case of bare clusters vibrational periods scaling with size down to diatomic molecules. For ligand-protected clusters, they show a pronounced effect of the ligand molecules on the breathing-like mode vibrational period at the origin of its constant value. This deviation from classical elasticity predictions results from mechanical mass-loading effects due to the protecting layer. This study shows that clusters characteristic vibrational frequencies are compatible with extrapolation of continuum mechanics model down to few atoms, which is in agreement with DFT computations.

Details

show
hide
Language(s): eng - English
 Dates: 2018-09-172018-07-042018-09-242018-11-14
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acs.nanolett.8b02717
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : LASERLAB-EUROPE - The Integrated Initiative of European Laser Research Infrastructures III
Grant ID : 284464
Funding program : Funding Programme 7 (FP7)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Nano Letters
  Abbreviation : Nano Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: 8 Volume / Issue: 18 (11) Sequence Number: - Start / End Page: 6842 - 6849 Identifier: ISSN: 1530-6984
CoNE: https://pure.mpg.de/cone/journals/resource/110978984570403