Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Microstructural mechanisms of fatigue crack non-propagation in TRIP-maraging steels

Zhang, Z., Koyama, M., Wang, M., Tsuzaki, K., Tasan, C. C., & Noguchi, H. (2018). Microstructural mechanisms of fatigue crack non-propagation in TRIP-maraging steels. International Journal of Fatigue, 113, 126-136. doi:10.1016/j.ijfatigue.2018.04.013.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhang, Zhao1, Autor           
Koyama, Motomichi1, Autor           
Wang, Meimei2, 3, Autor           
Tsuzaki, Kaneaki1, Autor           
Tasan, Cemal Cem4, Autor           
Noguchi, Hiroshi1, Autor           
Affiliations:
1Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan, ou_persistent22              
2Adaptive Structural Materials (Experiment), Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863382              
3Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, persistent22              
4Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Austenite; Fatigue crack propagation; Fatigue of materials; High strength steel; Laminating; Maraging steel; Martensitic transformations; Plasticity, Crack propagation path; Fatigue cracks; Fatigue Limit; Laminated structures; Microstructural mechanisms; Roughness induced crack closure; Transformation induced plasticity; Transformation-Induced, Crack closure
 Zusammenfassung: In contrast to conventional martensitic steels, transformation-induced plasticity (TRIP)-maraging steels exhibit exceptional high ductility without sacrificing strength and excellent fatigue property owing to the retained austenite/maraging martensite laminated structure. In this study, TRIP-maraging steel (Fe-9Mn-3Ni-1.4Al-0.01C, wt.) with fine grained austenite was used to investigate the mechanism of high cycle fatigue resistance. Our analyses revealed that soft austenite region acts as a preferential crack propagation path, but the plastic deformation during crack opening involves martensitic transformation, resisting subsequent crack growth via transformation-induced local hardening or crack closure. Moreover, crack growth along the laminates and across the block boundary forms a zigzag crack path, which would act as roughness-induced crack closure. The combined effect of these factors plays an important role in resisting fatigue crack growth at high cycle fatigue. © 2018 Elsevier Ltd

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-08
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.ijfatigue.2018.04.013
BibTex Citekey: Zhang2018126
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Fatigue
  Andere : Int. J. Fatigue
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Guildford, England : Elsevier
Seiten: - Band / Heft: 113 Artikelnummer: - Start- / Endseite: 126 - 136 Identifikator: ISSN: 0142-1123
CoNE: https://pure.mpg.de/cone/journals/resource/954925471357