English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns

Kapsch, M.-L., Skific, N., Graversen, R., Tjernström, M., & Francis, J. (2018). Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns. Climate Dynamics, available online. doi:10.1007/s00382-018-4279-z.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Kapsch, Marie-Luise1, Author           
Skific, N., Author
Graversen, R.G., Author
Tjernström, M., Author
Francis, J.A., Author
Affiliations:
1Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society, ou_913557              

Content

show
hide
Free keywords: -
 Abstract: The declining trend of Arctic September sea ice constitutes a significant change in the Arctic climate system. Large year-to-year variations are superimposed on this sea–ice trend, with the largest variability observed in the eastern Arctic Ocean. Knowledge of the processes important for this variability may lead to an improved understanding of seasonal and long-term changes. Previous studies suggest that transport of heat and moisture into the Arctic during spring enhances downward surface longwave radiation, thereby controlling the annual melt onset, setting the stage for the September ice minimum. In agreement with these studies, we find that years with a low September sea–ice concentration (SIC) are characterized by more persistent periods in spring with enhanced energy flux to the surface in forms of net longwave radiation plus turbulent fluxes, compared to years with a high SIC. Two main atmospheric circulation patterns related to these episodes are identified: one resembles the so-called Arctic dipole anomaly that promotes transport of heat and moisture from the North Pacific, whereas the other is characterized by negative geopotential height anomalies over the Arctic, favoring cyclonic flow from Siberia and the Kara Sea into the eastern Arctic Ocean. However, differences between years with low and high September SIC appear not to be due to different spring circulation patterns; instead it is the persistence and intensity of processes associated with these patterns that distinguish the two groups of anomalous years: Years with low September SIC feature episodes that are consistently stronger and more persistent than years with high SIC. © 2018 The Author(s)

Details

show
hide
Language(s): eng - English
 Dates: 2018-05
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s00382-018-4279-z
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer Verlag
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: available online Identifier: ISSN: 09307575