English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Mechanism of vibrational energy dissipation of free OH groups at the air-water interface

Hsieh, C.-S., Campen, R. K., Okuno, M., Backusa, E. H. G., Nagata, Y., & Bonn, M. (2013). Mechanism of vibrational energy dissipation of free OH groups at the air-water interface. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 18780-18785. doi:10.1073/pnas.1314770110.

Item is

Files

show Files
hide Files
:
289788_0_uploaded_1375728264.pdf (Any fulltext), 482KB
Name:
289788_0_uploaded_1375728264.pdf
Description:
-
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2013
Copyright Info:
National Academy of Sciences
License:
-

Locators

show

Creators

show
hide
 Creators:
Hsieh, Cho-Shuen1, 2, Author
Campen, R. Kramer3, Author           
Okuno, Masanari1, Author
Backusa, Ellen H. G.1, Author
Nagata, Yuki1, Author
Bonn, Mischa1, Author
Affiliations:
1Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, 55128 Mainz, Germany; , ou_persistent22              
2Foundation for Fundamental Research on Matter Institute for Atomic and Molecular Physics, 1098 XG, Amsterdam, The Netherlands, ou_persistent22              
3Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              

Content

show
hide
Free keywords: sum-frequency generation vibrational spectroscopy energy relaxation reorientation isotopically diluted water
 Abstract: Interfaces of liquid water play a critical role in a wide variety of processes that occur in biology, a variety of technologies, and the environment. Many macroscopic observations clarify that the properties of liquid water interfaces significantly differ from those of the bulk liquid. In addition to interfacial molecular structure, knowledge of the rates and mechanisms of the relaxation of excess vibrational energy is indispensable to fully understand physical and chemical processes of water and aqueous solutions, such as chemical reaction rates and pathways, proton transfer, and hydrogen bond dynamics. Here we elucidate the rate and mechanism of vibrational energy dissipation of water molecules at the air–water interface using femtosecond two-color IR-pump/vibrational sum-frequency probe spectroscopy. Vibrational relaxation of nonhydrogen-bonded OH groups occurs at a subpicosecond timescale in a manner fundamentally different from hydrogen-bonded OH groups in bulk, through two competing mechanisms: intramolecular energy transfer and ultrafast reorientational motion that leads to free OH groups becoming hydrogen bonded. Both pathways effectively lead to the transfer of the excited vibrational modes from free to hydrogen-bonded OH groups, from which relaxation readily occurs. Of the overall relaxation rate of interfacial free OH groups at the air–H2O interface, two-thirds are accounted for by intramolecular energy transfer, whereas the remaining one-third is dominated by the reorientational motion. These findings not only shed light on vibrational energy dynamics of interfacial water, but also contribute to our understanding of the impact of structural and vibrational dynamics on the vibrational sum-frequency line shapes of aqueous interfaces.

Details

show
hide
Language(s): eng - English
 Dates: 2013-08-042013-11-042013-11-19
 Publication Status: Issued
 Pages: 6
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1073/pnas.1314770110
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Natl. Acad. Sci. U. S. A.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: National Academy of Sciences
Pages: - Volume / Issue: 110 (47) Sequence Number: - Start / End Page: 18780 - 18785 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230