English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Learning Dense 3D Correspondence

Steinke, F., Schölkopf, B., & Blanz, V. (2007). Learning Dense 3D Correspondence. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1313-1320). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Steinke, F1, 2, Author           
Schölkopf, B1, 2, Author           
Blanz, V2, 3, Author           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.

Details

show
hide
Language(s):
 Dates: 2007-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4148
 Degree: -

Event

show
hide
Title: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)
Place of Event: Vancouver, BC, Canada
Start-/End Date: 2006-12-04 - 2006-12-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 19
Source Genre: Proceedings
 Creator(s):
Schölkopf, B1, Editor           
Platt, JC, Editor
Hoffman, T, Editor
Affiliations:
1 Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795            
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 1313 - 1320 Identifier: ISBN: 0-262-19568-2