English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2.

Gattin, Z., Schneider, R., Laukat, Y., Giller, K., Maier, E., Zweckstetter, M., et al. (2015). Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. Journal of Biomolecular NMR, 61(3-4), 311-320. doi:10.1007/s10858-014-9876-5.

Item is

Files

show Files
hide Files
:
2151827.pdf (Publisher version), 3MB
 
File Permalink:
-
Name:
2151827.pdf
Description:
-
OA-Status:
Visibility:
Restricted (UNKNOWN id 303; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Gattin, Z.1, Author           
Schneider, R.2, Author           
Laukat, Y.2, Author           
Giller, K.2, Author           
Maier, E., Author
Zweckstetter, M.3, Author           
Griesinger, C.2, Author           
Benz, R., Author
Becker, S.2, Author           
Lange, A.1, Author           
Affiliations:
1Research Group of Solid-state NMR, MPI for biophysical chemistry, Max Planck Society, ou_persistent35              
2Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society, ou_578567              
3Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society, ou_578571              

Content

show
hide
Free keywords: Voltage-dependent anion channel; Membrane proteins; Solid-state NMR; Molecular dynamics simulations
 Abstract: The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.

Details

show
hide
Language(s): eng - English
 Dates: 2014-11-162015-04
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s10858-014-9876-5
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Biomolecular NMR
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 61 (3-4) Sequence Number: - Start / End Page: 311 - 320 Identifier: -