Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Barium titanate ground- and excited-state properties from first-principles calculations

Sanna, S., Thierfelder, C., Wippermann, S. M., Sinha, T. P., & Schmidt, W. G. (2011). Barium titanate ground- and excited-state properties from first-principles calculations. Physical Review B, 83(5): 054112. doi:10.1103/PhysRevB.83.054112.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sanna, Simone1, Autor           
Thierfelder, Christian2, Autor           
Wippermann, Stefan Martin1, Autor           
Sinha, Tripurari Prasad3, Autor           
Schmidt, Wolf Gero4, Autor           
Affiliations:
1Department of Theoretical Physics, Paderborn University, 33095 Paderborn, Germany, ou_persistent22              
2Lehrstuhl für Theoretische Physik, Universität Paderborn, D-33095 Paderborn, Germany, ou_persistent22              
3Department of Physics, Bose Institute, Kolkata 700009, India, ou_persistent22              
4Lehrstuhl für Theoretische Physik, Universität Paderborn, 33095 Paderborn, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a comprehensive theoretical investigation of paraelectric (cubic) and ferroelectric (tetragonal) BaTiO3. The atomic and electronic structure, piezoelectric tensor, Debye temperature, zone center phonon frequencies, and optical absorption are calculated for both phases from first principles. The structural and vibrational properties predicted from density functional theory are in good agreement with experiment and earlier theoretical work. The electronic structure and optical response are found to be very sensitive to quasiparticle and electron-hole attraction effects, which are accounted for by using the GW approach and by solving the Bethe-Salpeter equation, respectively. Electronic self-energy effects are found to open the band gap substantially, to 3.7 and 3.9 eV for the cubic and tetragonal phases, respectively. In contrast to earlier calculations, good agreement with the measured optical data is achieved. The ab initio thermodynamics predicts that the ferroelectric ordering will disappear at 419 K. It is shown that the phase transition is driven by the vibrational entropy of a variety of modes.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2011-02-23
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000287653700003
DOI: 10.1103/PhysRevB.83.054112
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 83 (5) Artikelnummer: 054112 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008