Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Damage tolerance of lamellar bone

Razi, H., Predan, J., Fischer, F. D., Kolednik, O., & Fratzl, P. (2020). Damage tolerance of lamellar bone. Bone, 130: 115102. doi:10.1016/j.bone.2019.115102.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
Manuscript.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
Manuscript.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Razi, Hajar1, Autor           
Predan, Jozef, Autor
Fischer, Franz Dieter, Autor
Kolednik, Otmar, Autor
Fratzl, Peter2, Autor           
Affiliations:
1Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863285              
2Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: bone strength, bone toughness, bone fracture
 Zusammenfassung: Lamellar bone is known to be the most typical structure of cortical bone in large mammals including humans. This type of tissue provides a good combination of strength and fracture toughness. As has been shown by John D Currey and other researchers, large deformations are associated with the appearance of microdamage that optically whitens the tissue, a process that has been identified as a contribution to bone toughness. Using finite-element modelling, we study crack propagation in a material with periodic variation of mechanical parameters, such as elastic modulus and strength, chosen to represent lamellar bone. We show that a multitude of microcracks appears in the region ahead of the initial crack tip, thus dissipating energy even without a progression of the initial crack tip. Strength and toughness are shown to be both larger for the (notched) lamellar material than for a homogeneous material with the same average properties and the same initial notch. The length of the microcracks typically corresponds to the width of a lamella, that is, to several microns. This simultaneous improvement of strength and toughness may explain the ubiquity of lamellar plywood structures not just in bone but also in plants and in chitin-based cuticles of insects and arthropods.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-10-242020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.bone.2019.115102
BibTex Citekey: RAZI2019115102
PMID: 0581
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Bone
  Andere : Bone
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Elsevier
Seiten: - Band / Heft: 130 Artikelnummer: 115102 Start- / Endseite: - Identifikator: ISSN: 8756-3282