Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Geometry-induced electrostatic trapping of nanometric objects in a fluid

Krishnan, M., Mojarad, N., Kukura, P., & Sandoghdar, V. (2010). Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature, 467, 692-U75. doi:10.1038/nature09404.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Krishnan, Madhavi1, Autor
Mojarad, Nassiredin1, Autor
Kukura, Philipp1, Autor
Sandoghdar, Vahid2, Autor           
Affiliations:
1external, ou_persistent22              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The ability to trap an object-whether a single atom or a macroscopic entity-affects fields as diverse as quantum optics(1), soft condensed-matter physics, biophysics and clinical medicine(2). Many sophisticated methodologies have been developed to counter the randomizing effect of Brownian motion in solution(3-10), but stable trapping of nanometre-sized objects remains challenging(8-10). Optical tweezers are widely used traps, but require sufficiently polarizable objects and thus are unable to manipulate small macromolecules. Confinement of single molecules has been achieved using electrokinetic feedback guided by tracking of a fluorescent label, but photophysical constraints limit the trap stiffness and lifetime(8). Here we show that a fluidic slit with appropriately tailored topography has a spatially modulated electrostatic potential that can trap and levitate charged objects in solution for up to several hours. We illustrate this principle with gold particles, polymer beads and lipid vesicles with diameters of tens of nanometres, which are all trapped without external intervention and independently of their mass and dielectric function. The stiffness and stability of our electrostatic trap is easily tuned by adjusting the system geometry and the ionic strength of the solution, and it lends itself to integration with other manipulation mechanisms. We anticipate that these features will allow its use for contact-free confinement of single proteins and macromolecules, and the sorting and fractionation of nanometre-sized objects or their assembly into high-density arrays.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2010
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/nature09404
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 467 Artikelnummer: - Start- / Endseite: 692 - U75 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238