English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Evolution of (Ti, Mo)C particles in austenite of a Ti–Mo-bearing steel

Wang, Z., Zhang, H., Guo, C., Leng, Z., Yang, Z., Sun, X., et al. (2016). Evolution of (Ti, Mo)C particles in austenite of a Ti–Mo-bearing steel. Materials and Design, 109, 361-366. doi:10.1016/j.matdes.2016.07.081.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wang, Zhenqiang1, Author           
Zhang, Han2, Author           
Guo, Chunhuan1, Author           
Leng, Zhe1, Author           
Yang, Zhigang3, Author           
Sun, Xinjun4, Author           
Yao, Chunfa4, Author           
Zhang, Zhengyan4, Author           
Jiang, Fengchun1, Author           
Affiliations:
1Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China, persistent22              
2Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
3Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing, China, persistent22              
4Central Iron and Steel Research Institute, No. 76, Xueyuan Nanlu, Beijing, China, persistent22              

Content

show
hide
Free keywords: Austenite; Blast enrichment; Coarsening; Crystal microstructure; Diffusion; Particles (particulate matter); Strain energy, Austenite matrix; Deformed microstructure; Diffusion controlled growth; High temperature; Interface reactions; Isothermal holding; Particle morphologies; Recovery and recrystallization, Precipitation (chemical)
 Abstract: The present work investigated the evolution of (Ti, Mo)C particles in austenite of a Ti-Mo-bearing steel during isothermal holding after hot deformation at 925 °C. Results show that the (Ti, Mo)C particles sequentially undergo dislocation-assisted diffusion controlled growth stage, interface-reaction controlled slow coarsening stage, and bulk diffusion controlled fast coarsening stage. The Mo-enriched region near the outer layer of the (Ti, Mo)C particles results in the slow coarsening stage. To reduce the total interface and strain energy correlated with austenite matrix, the particle morphology evolution follows spherical → polyhedral → irregular route. Compared to TiC, dispersive refined (Ti, Mo)C particles suppress austenite recovery and recrystallization more effectively, which favors maintaining the deformed microstructures at high temperatures. © 2016 Elsevier Ltd

Details

show
hide
Language(s): eng - English
 Dates: 2016-11-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.matdes.2016.07.081
BibTex Citekey: Wang2016361
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Materials and Design
  Other : Materials & Design
  Abbreviation : Mater. Des.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Reigate, Surrey, Eng. : Elsevier
Pages: - Volume / Issue: 109 Sequence Number: - Start / End Page: 361 - 366 Identifier: ISSN: 0264-1275
CoNE: https://pure.mpg.de/cone/journals/resource/954926234428