Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling the electron transport chain of purple non-sulfur bacteria

Klamt, S., Grammel, H., Straube, R., Ghosh, R., & Gilles, E. D. (2008). Modeling the electron transport chain of purple non-sulfur bacteria. Molecular Systems Biology, 4: 156. doi:10.1038/msb4100191.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
eDoc_331289_2008.pdf (Verlagsversion), 348KB
Name:
eDoc_331289_2008.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Klamt, S.1, Autor           
Grammel, H.1, Autor           
Straube, R.1, Autor           
Ghosh, R.2, Autor
Gilles, E. D.1, Autor           
Affiliations:
1Systems Biology, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738155              
2University of Stuttgart, Institute of Biology, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Purple non-sulfur bacteria (Rhodospirillaceae) have been extensively employed for studying principles of photosynthetic and respiratory electron transport phosphorylation and for investigating the regulation of gene expression in response to redox signals. Here, we use mathematical modeling to evaluate the steady-state behavior of the electron transport chain (ETC) in these bacteria under different environmental conditions. Elementary-modes analysis of a stoichiometric ETC model reveals nine operational modes. Most of them represent well-known functional states, however, two modes constitute reverse electron flow under respiratory conditions, which has been barely considered so far. We further present and analyze a kinetic model of the ETC in which rate laws of electron transfer steps are based on redox potential differences. Our model reproduces well-known phenomena of respiratory and photosynthetic operation of the ETC and also provides non-intuitive predictions. As one key result, model simulations demonstrate a stronger reduction of ubiquinone when switching from high-light to low-light conditions. This result is parameter insensitive and supports the hypothesis that the redox state of ubiquinone is a suitable signal for controlling photosynthetic gene expression. © 2008 EMBO and Nature Publishing Group

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2008
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/msb4100191
eDoc: 331289
Anderer: 4/08
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Systems Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 4 Artikelnummer: 156 Start- / Endseite: - Identifikator: -