English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes.

Lenart, P., Rabut, G., Daigle, N., Hand, A. R., Terasaki, M., & Ellenberg, J. (2003). Nuclear envelope breakdown in starfish oocytes proceeds by partial NPC disassembly followed by a rapidly spreading fenestration of nuclear membranes. Journal of Cell Biology, 160(7), 1055-1068. doi:10.1083/jcb.200211076.

Item is

Files

show Files
hide Files
:
2642120.pdf (Publisher version), 2MB
Name:
2642120.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Lenart, P.1, Author           
Rabut, G., Author
Daigle, N., Author
Hand, A. R., Author
Terasaki, M., Author
Ellenberg, J., Author
Affiliations:
1Research Group of Cytoskeletal Dynamics in Oocytes, MPI for Biophysical Chemistry, Max Planck Society, ou_2640691              

Content

show
hide
Free keywords: -
 Abstract: Breakdown of the nuclear envelope (NE) was analyzed in live starfish oocytes using a size series of fluorescently labeled dextrans, membrane dyes, and GFP-tagged proteins of the nuclear pore complex (NPC) and the nuclear lamina. Permeabilization of the nucleus occurred in two sequential phases. In phase I the NE became increasingly permeable for molecules up to approximately 40 nm in diameter, concurrent with a loss of peripheral nuclear pore components over a time course of 10 min. The NE remained intact on the ultrastructural level during this time. In phase II the NE was completely permeabilized within 35 s. This rapid permeabilization spread as a wave from one epicenter on the animal half across the nuclear surface and allowed free diffusion of particles up to approximately 100 nm in diameter into the nucleus. While the lamina and nuclear membranes appeared intact at the light microscopic level, a fenestration of the NE was clearly visible by electron microscopy in phase II. We conclude that NE breakdown in starfish oocytes is triggered by slow sequential disassembly of the NPCs followed by a rapidly spreading fenestration of the NE caused by the removal of nuclear pores from nuclear membranes still attached to the lamina.

Details

show
hide
Language(s): eng - English
 Dates: 2003-03-242003-03-31
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1083/jcb.200211076
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Cell Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 160 (7) Sequence Number: - Start / End Page: 1055 - 1068 Identifier: -