Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Fast propagation regions cause self-sustained reentry in excitable media

Zykov, V. S., Krekhov, A., & Bodenschatz, E. (2017). Fast propagation regions cause self-sustained reentry in excitable media. Proceedings of the National Academy of Sciences of the United States of America, 114(6), 1281-1286. doi:10.1073/pnas.1611475114.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zykov, Vladimir S.1, Autor           
Krekhov, Alexei1, Autor           
Bodenschatz, Eberhard1, Autor           
Affiliations:
1Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063287              

Inhalt

einblenden:
ausblenden:
Schlagwörter: excitable media; spirals; reentry; cardiology; ablation
 Zusammenfassung: Self-sustained waves of electrophysiological activity can cause arrhythmia in the heart. These reentrant excitations have been associated with spiral waves circulating around either an anatomically defined weakly conducting region or a functionally determined core. Recently, an ablation procedure has been clinically introduced that stops atrial fibrillation of the heart by destroying the electrical activity at the spiral core. This is puzzling because the tissue at the anatomically defined spiral core would already be weakly conducting, and a further decrease should not improve the situation. In the case of a functionally determined core, an ablation procedure should even further stabilize the rotating wave. The efficacy of the procedure thus needs explanation. Here, we show theoretically that fundamentally in any excitable medium a region with a propagation velocity faster than its surrounding can act as a nucleation center for reentry and can anchor an induced spiral wave. Our findings demonstrate a mechanistic underpinning for the recently developed ablation procedure. Our theoretical results are based on a very general and widely used two-component model of an excitable medium. Moreover, the important control parameters used to realize conditions for the discovered phenomena are applicable to quite different multicomponent models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-01-25
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.1611475114
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 114 (6) Artikelnummer: - Start- / Endseite: 1281 - 1286 Identifikator: -