Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Accretion-driven turbulence in filaments II: effects of self-gravity

Heigl, S., Burkert, A., & Gritschneder, M. (2020). Accretion-driven turbulence in filaments II: effects of self-gravity. Monthly Notices of the Royal Astronomical Society, 495(1), 758-770. doi:10.1093/mnras/staa1202.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Accretion-driven turbulence in filaments II effects of self-gravity.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
Accretion-driven turbulence in filaments II effects of self-gravity.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Heigl, S.1, Autor           
Burkert, A.1, Autor           
Gritschneder, M, Autor
Affiliations:
1Optical and Interpretative Astronomy, MPI for Extraterrestrial Physics, Max Planck Society, ou_159895              

Inhalt

einblenden:
ausblenden:
Schlagwörter: We extend our previous work on simulations with the code ramses on accretion-driven turbulence by including self-gravity and study the effects of core formation and collapse. We show that radial accretion on to filaments drives turbulent motions which are not isotropic but radially dominated. In contrast to filaments without gravity, the velocity dispersion of self-gravitating filaments does not settle in an equilibrium. Despite showing similar amounts of driven turbulence, they continually dissipate their velocity dispersion until the onset of core formation. This difference is connected to the evolution of the radius as it determines the dissipation rate. In the non-gravitational case filament growth is not limited and its radius grows linearly with time. In contrast, there is a maximum extent in the self-gravitational case resulting in an increased dissipation rate. Furthermore, accretion-driven turbulence shows a radial profile which is anticorrelated with density. This leads to a constant turbulent pressure throughout the filament. As the additional turbulent pressure does not have a radial gradient it does not contribute to the stability of filaments and does not increase the critical line-mass. However, this radial turbulence does affect the radius of a filament, adding to the extent and setting its maximum value. Moreover, the radius evolution also affects the growth time-scale of cores which compared to the time-scale of collapse of an accreting filament limits core formation to high line-masses.
 Zusammenfassung: -

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-05-02
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/mnras/staa1202
Anderer: LOCALID: 3250305
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Monthly Notices of the Royal Astronomical Society
  Kurztitel : Mon. Not. Roy. Astron. Soc.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 495 (1) Artikelnummer: - Start- / Endseite: 758 - 770 Identifikator: ISSN: 0035-8711
ISSN: 1365-8711