English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides

Pandey, R., Flockerzi, D., Hauser, M. J. B., & Straube, R. (2012). An extended model for the repression of photosynthesis genes by the AppA/PpsR system in Rhodobacter sphaeroides. FEBS Journal, 279(18), 3449-3461. doi:10.1111/j.1742-4658.2012.08520.X.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Pandey, Rakesh1, 2, Author           
Flockerzi, Dietrich3, Author           
Hauser, Marcus J. B.4, Author
Straube, Ronny2, Author           
Affiliations:
1International Max Planck Research School (IMPRS), ou_1738143              
2Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738139              
3Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738154              
4Otto-von-Guericke University,Biophysics Group, Institute of Experimental Physics,Magdeburg, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Purple bacteria derive energy from aerobic respiration or photosynthesis depending on the availability of oxygen and light. Under aerobic conditions, photosynthesis genes are specifically repressed by the PpsR protein. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the blue-light and redox-sensitive flavoprotein AppA, which sequesters PpsR under anaerobic conditions into transcriptionally inactive complexes. However, under semi-aerobic conditions, blue-light excitation of AppA causes the AppA–PpsR complexes to dissociate, again leading to a repression of photosynthesis genes. We have recently developed a simple mathematical model suggesting that this phenotype arises from the formation of a maximum in the response curve of reduced PpsR at intermediate oxygen concentrations. However, this model focused mainly on the oxygen-dependent interactions whereas light regulation was only implemented in a simplified manner. In the present study, we incorporate a more detailed mechanism for the light-dependent interaction between AppA and PpsR, which now allows for a direct comparison with experiments. Specifically, we take into account that, upon blue–light excitation, AppA undergoes a conformational change, creating a long-lived signalling state causing the dissociation of the AppA–PpsR complexes. The predictions of the extended model are found to be in good agreement with experimental results on the light-dependent repression of photosynthesis genes under semi-aerobic conditions. We also identify the potential kinetic and stoichiometric constraints that the interplay between light and redox regulation imposes on the functionality of the AppA/PpsR system, especially with respect to a possible bistable response. Copyright © 1999–2013 John Wiley & Sons, Inc. All Rights Reserved. [accessed 2013 July 2nd]

Details

show
hide
Language(s):
 Dates: 2012
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 609258
DOI: 10.1111/j.1742-4658.2012.08520.X
Other: 14/12
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: FEBS Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 279 (18) Sequence Number: - Start / End Page: 3449 - 3461 Identifier: -