Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Deep Learning-driven Detection and Mapping of Rockfalls on Mars

Bickel, V. T., Conway, S. J., Tesson, P.-A., Manconi, A., Loew, S., & Mall, U. (2020). Deep Learning-driven Detection and Mapping of Rockfalls on Mars. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi:10.1109/JSTARS.2020.2991588.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bickel, Valentin Tertius1, Autor           
Conway, Susan J, Autor
Tesson, Pierre-Antoine, Autor
Manconi, Andrea, Autor
Loew, Simon, Autor
Mall, Urs1, Autor           
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The analysis of rockfall distribution and magnitude is a useful tool to study the past and current endogenic and exogenic activity of Mars. At the same time, tracks left by rockfalls provide insights into the mechanical properties of the martian surface. While a wealth of high-resolution space-borne image data are available, manual mapping of displaced boulders with tracks is inefficient and slow, resulting in 1) a small total number of mapped features, 2) inadequate statistics, and 3) a sub-optimal utilization of the available big data. This study implements a deep learning-driven approach to automatically detect and map martian boulders with tracks in High Resolution Imaging Science Experiment (HiRISE) imagery. Six off-the-shelf neural networks have been trained either on martian or lunar rockfall data, or a combination of both, and are able to achieve a maximum recall of up to 0.78 and a maximum precision of up to 1.0, with a mean average precision of 0.71. The fusion of training data from different planets and sensors results in an increased detection precision, highlighting the value of domain generalization and multi-domain learning. Average processing time per HiRISE image is ~45 s using an NVIDIA Titan Xp, which is more than one order of magnitude faster than a human operator. The developed deep learning-driven infrastructure can be deployed to map martian rockfalls on a global scale and within a realistic timeframe.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1109/JSTARS.2020.2991588
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : IEEE
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -