Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Modeling linear and non-linear light-matter interactions: From classical to atomistic nanoplasmonics

Varas, A. (2017). Modeling linear and non-linear light-matter interactions: From classical to atomistic nanoplasmonics. PhD Thesis, University of the Basque Country UPV/EHU, San Sebastián, Spain. Retrieved from http://hdl.handle.net/10810/23946.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Hochschulschrift

Dateien

einblenden: Dateien
ausblenden: Dateien
:
TESIS_VARAS_BARBOZA_ALEJANDRO JAVIER.pdf (Verlagsversion), 15MB
Name:
TESIS_VARAS_BARBOZA_ALEJANDRO JAVIER.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
© A. Varas

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://hdl.handle.net/10810/23946 (Zusammenfassung)
Beschreibung:
-
OA-Status:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Varas, A.1, Autor           
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In the last years, nanoplasmonics has become an important research field in the realm of light-matterinteractions due to the wide range of applications. Driven by the interaction of electromagnetic radiationon nanostructures, resonant excitations of the so-called surface plasmons at the frequencies of electronicexcitations in matter, leads to an enhanced of the local electric field. Motivated by this phenomenon, inthis thesis, we have modeled different linear and non-linear interaction processes betweenelectromagnetic radiation and low-dimensional nanostructures to simulate particular physicalphenomena based on nanoplasmonics. Depending on the length scale of the system to be modeled, wehave used different techniques, ranging from classical to atomistic ab-initio methods. Specifically, wehave performed: (i) DDA and finite element method calculations to analyze the plasmonic behaviour ofrecently synthesized (by a collaborative research group) non-stoichiometric heavily-dopedsemiconductor nanocrystals (Cu2-xS, and WO3-x); (ii) fully atomistic ab-initio simulations on metalcluster dimers to analyze the anisotropy effects of the plasmonic response of this nanostructures,including the electric field enhancement and the photoinduced current, as well as the influence of a oneatomjunction between the two atomic conformations; (iii) and finally, motivated by a collaboration withanother experimental research group we have modeled laser ablation processes in low-dimensionalnanostructures, driven by intense and ultrashort laser pulses (in the plasmon resonance regime). Throughthese simulations, we have analyzed if Coulomb Explosion or electrostatic ablation is the mechanism ofmaterial removal in the early stage of the gentle ablation regime.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-09-042017-12-042017
 Publikationsstatus: Erschienen
 Seiten: 267
 Ort, Verlag, Ausgabe: San Sebastián, Spain : University of the Basque Country UPV/EHU
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: URI: http://hdl.handle.net/10810/23946
 Art des Abschluß: Doktorarbeit

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: