English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Learning 3D Shape Completion under Weak Supervision

Stutz, D., & Geiger, A. (2018). Learning 3D Shape Completion under Weak Supervision. International Journal of Computer Vision, 128, 1162-1181. doi:10.1007/s11263-018-1126-y.

Item is

Basic

show hide
Genre: Journal Article
Latex : Learning {3D} Shape Completion under Weak Supervision

Files

show Files
hide Files
:
Stutz-Geiger2018_Article_Learning3DShapeCompletionUnder.pdf (Publisher version), 3MB
Name:
Stutz-Geiger2018_Article_Learning3DShapeCompletionUnder.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
License:
-

Locators

show

Creators

show
hide
 Creators:
Stutz, David1, Author              
Geiger, Andreas2, Author
Affiliations:
1Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society, ou_1116547              
2External Organizations, ou_persistent22              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2018
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s11263-018-1126-y
BibTex Citekey: Stutz2018IJCV
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Computer Vision
  Other : Int. J. Comput. Vis.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Springer
Pages: 20 p. Volume / Issue: 128 Sequence Number: - Start / End Page: 1162 - 1181 Identifier: ISSN: 0920-5691
CoNE: https://pure.mpg.de/cone/journals/resource/954925564668