Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Unsupervised Learning for Thermophysical Analysis on the Lunar Surface

Moseley, B., Bickel, V. T., Burelbach, J., & Relatores, N. (2020). Unsupervised Learning for Thermophysical Analysis on the Lunar Surface. The Planetary Science Journal, 1: 32. doi:10.3847/PSJ/ab9a52.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Moseley, Ben, Autor
Bickel, Valentin Tertius1, Autor           
Burelbach, Jérôme, Autor
Relatores, Nicole, Autor
Affiliations:
1Department Planets and Comets, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832288              

Inhalt

einblenden:
ausblenden:
Schlagwörter: The Moon ; Lunar composition ; Convolutional neural networks
 Zusammenfassung: We investigate the use of unsupervised machine learning to understand and extract valuable information from thermal measurements of the lunar surface. We train a variational autoencoder (VAE) to reconstruct observed variations in lunar surface temperature from over 9 yr of Diviner Lunar Radiometer Experiment data and in doing so learn a fully data-driven thermophysical model of the lunar surface. The VAE defines a probabilistic latent model that assumes the observed surface temperature variations can be described by a small set of independent latent variables and uses a deep convolutional neural network to infer these latent variables and to reconstruct surface temperature variations from them. We find it is able to disentangle five different thermophysical processes from the data, including (1) the solar thermal onset delay caused by slope aspect, (2) effective albedo, (3) surface thermal conductivity, (4) topography and cumulative illumination, and (5) extreme thermal anomalies. Compared to traditional physics-based modeling and inversion, our method is extremely efficient, requiring orders of magnitude less computational power to invert for underlying model parameters. Furthermore our method is physics-agnostic and could therefore be applied to other space exploration data sets, immediately after the data is collected and without needing to wait for physical models to be developed. We compare our approach to traditional physics-based thermophysical inversion and generate new, VAE-derived global thermal anomaly maps. Our method demonstrates the potential of artificial intelligence-driven techniques to complement existing physical models as well as for accelerating lunar and space exploration in general.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3847/PSJ/ab9a52
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Planetary Science Journal
  Andere : Planet. Sci. J.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: IOP Publishing
Seiten: - Band / Heft: 1 Artikelnummer: 32 Start- / Endseite: - Identifikator: ISSN: 2632-3338
CoNE: https://pure.mpg.de/cone/journals/resource/2632-3338