English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves

Ashton, G., Prix, R., & Jones, D. I. (2017). Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves. Physical Review D, 96: 063004. doi:10.1103/PhysRevD.96.063004.

Item is

Files

show Files
hide Files
:
1704.00742.pdf (Preprint), 4MB
Name:
1704.00742.pdf
Description:
File downloaded from arXiv at 2017-05-17 10:22
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
PRD96.063004.pdf (Publisher version), 2MB
Name:
PRD96.063004.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Ashton, Gregory, Author
Prix, Reinhard1, 2, Author           
Jones, David Ian, Author
Affiliations:
1Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              
2Searching for Continuous Gravitational Waves, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, Hannover, DE, ou_2630691              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc, Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE
 Abstract: Continuous gravitational waves from neutron stars could provide an invaluable resource to learn about their interior physics. A common search method involves matched-filtering a modeled template against the noisy gravitational-wave data to find signals. This method suffers a mismatch (i.e. relative loss of signal-to-noise ratio) if the signal deviates from the template. One possible instance in which this may occur is if the neutron star undergoes a glitch, a sudden rapid increase in the rotation frequency seen in the timing of many radio pulsars. In this work, we use a statistical characterization of glitch rate and size in radio pulsars to estimate how often neutron star glitches would occur within the parameter space of continuous gravitational-wave searches, and how much mismatch putative signals would suffer in the search due to these glitches. We find that for many previous and potential future searches, continuous-wave signals have an elevated probability of undergoing one or more glitches, and that these glitches will often lead to a substantial fraction of the signal-to-noise ratio being lost. This could lead to a failure to identify candidate gravitational wave signals in the initial stages of a search, and also to the false dismissal of candidates in subsequent follow-up stages.

Details

show
hide
Language(s):
 Dates: 2017-04-032017
 Publication Status: Issued
 Pages: 22 pages, 9 figures
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
  Other : Phys. Rev. D.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lancaster, Pa. : American Physical Society
Pages: - Volume / Issue: 96 Sequence Number: 063004 Start / End Page: - Identifier: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258