Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space

Flick, J., Ruggenthaler, M., Appel, H., & Rubio, A. (2015). Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15285-15290. doi:10.1073/pnas.1518224112.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1509.01069v1.pdf (Preprint), 5MB
Name:
1509.01069v1.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2015
Copyright Info:
© J. Flick et al.

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1073/pnas.1518224112 (Verlagsversion)
Beschreibung:
-
OA-Status:
externe Referenz:
http://arxiv.org/abs/1509.01069 (Preprint)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Flick, Johannes1, Autor           
Ruggenthaler, Michael2, 3, 4, Autor           
Appel, Heiko1, 2, 3, Autor           
Rubio, Angel1, 2, 3, 5, Autor           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
2Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2074320              
3Center for Free-Electron Laser Science & Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany, ou_persistent22              
4Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria, ou_persistent22              
5Nano-Bio Spectroscopy Group and ETSF, Dpto. Fisica de Materiales, Universidad del País Vasco, 20018 San Sebastián, Spain, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Quantum Physics; Condensed Matter; Materials Science; time-dependent density functional theory; strong light matter interaction; quantum electrodynamics; photon matter correlations; quantum electrodynamical density functional theory
 Zusammenfassung: The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron–photon interactions in terms of effective Kohn–Sham potentials. In this work, we numerically construct the exact electron–photon Kohn–Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light–matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-09-142015-12-012015-12-15
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1073/pnas.1518224112
arXiv: 1509.01069
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Proceedings of the National Academy of Sciences of the United States of America
  Andere : Proc. Natl. Acad. Sci. USA
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : National Academy of Sciences
Seiten: - Band / Heft: 112 (50) Artikelnummer: - Start- / Endseite: 15285 - 15290 Identifikator: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230