Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Systematic Analysis of Stability Patterns in Plant Primary Metabolism

Girbig, D., Grimbs, S., & Selbig, J. (2012). Systematic Analysis of Stability Patterns in Plant Primary Metabolism. PLoS One, 7(4), e34686. doi:10.1371/journal.pone.0034686.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Girbig-2012-Systematic Analysis.pdf (beliebiger Volltext), 516KB
Name:
Girbig-2012-Systematic Analysis.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Girbig, D.1, 2, Autor           
Grimbs, S.1, Autor           
Selbig, J.1, Autor           
Affiliations:
1BioinformaticsCRG, Cooperative Research Groups, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753315              
2BioinformaticsCIG, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753303              

Inhalt

einblenden:
ausblenden:
Schlagwörter: photosynthesis in-silico calvin-benson cycle numerical-simulation carbon networks starch sedoheptulose-1,7-bisphosphatase complex models growth
 Zusammenfassung: Metabolic networks are characterized by complex interactions and regulatory mechanisms between many individual components. These interactions determine whether a steady state is stable to perturbations. Structural kinetic modeling (SKM) is a framework to analyze the stability of metabolic steady states that allows the study of the system Jacobian without requiring detailed knowledge about individual rate equations. Stability criteria can be derived by generating a large number of structural kinetic models (SK-models) with randomly sampled parameter sets and evaluating the resulting Jacobian matrices. Until now, SKM experiments applied univariate tests to detect the network components with the largest influence on stability. In this work, we present an extended SKM approach relying on supervised machine learning to detect patterns of enzyme-metabolite interactions that act together in an orchestrated manner to ensure stability. We demonstrate its application on a detailed SK-model of the Calvin-Benson cycle and connected pathways. The identified stability patterns are highly complex reflecting that changes in dynamic properties depend on concerted interactions between several network components. In total, we find more patterns that reliably ensure stability than patterns ensuring instability. This shows that the design of this system is strongly targeted towards maintaining stability. We also investigate the effect of allosteric regulators revealing that the tendency to stability is significantly increased by including experimentally determined regulatory mechanisms that have not yet been integrated into existing kinetic models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2012
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: ISI:000305341600061
DOI: 10.1371/journal.pone.0034686
ISSN: 1932-6203
URI: ://000305341600061 http://www.plosone.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0034686&representation=PDF
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS One
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 7 (4) Artikelnummer: - Start- / Endseite: e34686 Identifikator: -