English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems

Tancogne-Dejean, N., Oliveira, M. J. T., Andrade, X., Appel, H., Borca, C. H., Le Breton, G., et al. (2019). Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems.

Item is

Files

show Files
hide Files
:
1912.07921.pdf (Preprint), 4MB
Name:
1912.07921.pdf
Description:
Downloaded from arxiv.org: 2020-01-06
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2019
Copyright Info:
© the Author(s)

Locators

show
hide
Locator:
https://arxiv.org/abs/1912.07921 (Preprint)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Tancogne-Dejean, N.1, Author           
Oliveira, M. J. T.1, Author           
Andrade, X.2, Author
Appel, H.1, Author           
Borca, C. H.2, Author
Le Breton, G.3, Author
Buchholz, F.1, Author           
Castro, A.4, 5, Author
Corni, S.6, 7, Author
Correa, A. A.2, Author
de Giovannini, U.1, Author           
Delgado, A.8, Author
Eich, F. G.1, Author           
Flick, J.9, 10, Author
Gil, G.6, 11, Author
Gomez, A.4, Author
Helbig, N.12, Author
Hübener, H.1, Author           
Jestädt, R.1, Author           
Jornet-Somoza, J.1, Author           
Larsen, A. H.13, AuthorLebedeva, I. V.13, AuthorLüders, M.1, Author           Marques, M. A. L.14, AuthorOhlmann, S. T.15, AuthorPipolo, S.16, AuthorRampp, M.15, AuthorRozzi, C. A.7, AuthorStrubbe, D. A.17, AuthorSato, S.1, 18, Author           Schäfer, C.1, Author           Theophilou, I.1, Author           Welden, A.2, AuthorRubio, A.1, 10, 13, Author            more..
Affiliations:
1Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_2266715              
2Quantum Simulations Group, Lawrence Livermore National Laboratory, ou_persistent22              
3Département de Physique, École Normale Supérieure de Lyon, ou_persistent22              
4Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, ou_persistent22              
5ARAID Foundation, ou_persistent22              
6Dipartimento di Scienze Chimiche, Università degli studi di Padova, ou_persistent22              
7NR – Istituto Nanoscienze, ou_persistent22              
8Xanadu, Toronto, ou_persistent22              
9John A. Paulson School of Engineering and Applied Sciences, Harvard University, ou_persistent22              
10Center for Computational Quantum Physics, Flatiron Institute, ou_persistent22              
11Instituto de Cibernética, Matemática y Física, ou_persistent22              
12Nanomat/Qmat/CESAM and ETSF, Université de Liège, ou_persistent22              
13Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco, ou_persistent22              
14Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, ou_persistent22              
15Max Planck Computing and Data Facility, ou_persistent22              
16Universit de Lille, CNRS, Centrale Lille, ENSCL, Universit d Artois, ou_persistent22              
17Department of Physics, School of Natural Sciences, University of California, ou_persistent22              
18Center for Computational Sciences, University of Tsukuba, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Over the last years extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high-degree of precision. An appealing and challenging route towards engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, providing an unique framework allowing to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory framework. The present article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, like the new theoretical framework of quantum electrodynamics density-functional formalism (QEDFT) for the description of novel light-matter hybrid states. Those advances, and other being released soon as part of the Octopus package, will enable the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (QED-materials).

Details

show
hide
Language(s): eng - English
 Dates: 2019-12-17
 Publication Status: Published online
 Pages: 81
 Publishing info: -
 Table of Contents: -
 Rev. Type: No review
 Identifiers: arXiv: 1912.07921
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show