Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.

Janke, S. M., Auerbach, D. J., Wodtke, A. M., & Kandratsenka, A. (2015). An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. Journal of Chemical Physics, 143(12): 124708. doi:10.1063/1.4931669.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2224402.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
2224402.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Embargo bis 2015-09-28) (UNKNOWN id 303; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Urheber

einblenden:
ausblenden:
 Urheber:
Janke, S. M.1, Autor           
Auerbach, D. J.1, Autor           
Wodtke, A. M.1, Autor           
Kandratsenka, A.1, Autor           
Affiliations:
1Department of Dynamics at Surfaces, MPI for biophysical chemistry, Max Planck Society, ou_578600              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss approximate to 3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-09-282015-09-30
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.4931669
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 9 Band / Heft: 143 (12) Artikelnummer: 124708 Start- / Endseite: - Identifikator: -