Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Statistical Gravitational Waveform Models: What to Simulate Next?

Doctor, Z., Farr, B., Holz, D. E., & Pürrer, M. (2017). Statistical Gravitational Waveform Models: What to Simulate Next? Physical Review D, 96: 123011. doi:10.1103/PhysRevD.96.123011.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1706.05408.pdf (Preprint), 2MB
Name:
1706.05408.pdf
Beschreibung:
File downloaded from arXiv at 2017-07-31 11:51
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
PRD.96.123011.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
PRD.96.123011.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Gravitational Physics (Albert Einstein Institute), MPGR; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Doctor, Zoheyr, Autor
Farr, Ben, Autor
Holz, Daniel E., Autor
Pürrer, Michael1, Autor           
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_1933290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE,General Relativity and Quantum Cosmology, gr-qc
 Zusammenfassung: Models of gravitational waveforms play a critical role in detecting and characterizing the gravitational waves (GWs) from compact binary coalescences. Waveforms from numerical relativity (NR), while highly accurate, are too computationally expensive to produce to be directly used with Bayesian parameter estimation tools like Markov-chain-Monte-Carlo and nested sampling. We propose a Gaussian process regression (GPR) method to generate accurate reduced-order-model waveforms based only on existing accurate (e.g. NR) simulations. Using a training set of simulated waveforms, our GPR approach produces interpolated waveforms along with uncertainties across the parameter space. As a proof of concept, we use a training set of IMRPhenomD waveforms to build a GPR model in the 2-d parameter space of mass ratio $q$ and equal-and-aligned spin $\chi_1=\chi_2$. Using a regular, equally-spaced grid of 120 IMRPhenomD training waveforms in $q\in[1,3]$ and $\chi_1 \in [-0.5,0.5]$, the GPR mean approximates IMRPhenomD in this space to mismatches below $4.3\times 10^{-5}$. Our approach can alternatively use training waveforms directly from numerical relativity. Beyond interpolation of waveforms, we also present a greedy algorithm that utilizes the errors provided by our GPR model to optimize the placement of future simulations. In a fiducial test case we find that using the greedy algorithm to iteratively add simulations achieves GPR errors that are $\sim 1$ order of magnitude lower than the errors from using Latin-hypercube or square training grids.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2017-06-162017
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review D
  Andere : Phys. Rev. D.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lancaster, Pa. : American Physical Society
Seiten: - Band / Heft: 96 Artikelnummer: 123011 Start- / Endseite: - Identifikator: ISSN: 0556-2821
CoNE: https://pure.mpg.de/cone/journals/resource/111088197762258