English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Ultrahigh-resolution quantitative spinal cord MRI at 9.4T

Geldschläger, O., Bosch, D., Avdievich, N., & Henning, A. (2020). Ultrahigh-resolution quantitative spinal cord MRI at 9.4T. Magnetic Resonance in Medicine, Epub ahead. doi:10.1002/mrm.28455.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Geldschläger, O1, 2, Author           
Bosch, D2, 3, Author           
Avdievich, NI1, 2, Author           
Henning, A1, 2, Author           
Affiliations:
1Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_2528692              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract:

Purpose: To present the results of the first human spinal cord in vivo MRI scans at 9.4T.

Methods: A human brain coil was used to image the human spinal cord at 9.4T. All anatomical images were acquired with a T2 *-weighted gradient-echo sequence. A comparison of the influence of four different B0 shimming routines on the image quality was performed. Intrinsic signal-to-noise-ratio maps were determined using a pseudo-multiple replica approach. Measurements with different echo times were compared and processed to one multiecho data image combination image. Based on the multiecho acquisitions, T2 *-relaxation time maps were calculated. Algorithmic spinal cord detection and gray matter/white matter segmentation were tested.

Results: An echo time between 9 and 13.8 ms compromised best between gray matter/white matter contrast and image quality. A maximum in-plane resolution of 0.15 × 0.15 mm2 was achieved for anatomical images. These images offered excellent image quality and made small structures of the spinal cord visible. The scanner vendor implemented B0 shimming routine performed best during this work. Intrinsic signal-to-noise-ratio values of between 6600 and 8060 at the upper cervical spinal cord were achieved. Detection and segmentation worked reliably. An average T2 *-time of 24.88 ms ± 6.68 ms for gray matter and 19.37 ms ± 8.66 ms for white matter was calculated.

Conclusion: The proposed human brain coil can be used to image the spinal cord. The maximum in-plane resolution in this work was higher compared with the 7T results from the literature. The 9.4T acquisitions made the small structures of the spinal cord clearly visible.

Details

show
hide
Language(s):
 Dates: 2020-08
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/mrm.28455
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance in Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Wiley-Liss
Pages: - Volume / Issue: Epub ahead Sequence Number: - Start / End Page: - Identifier: ISSN: 0740-3194
CoNE: https://pure.mpg.de/cone/journals/resource/954925538149