English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A PTAS for l p-Low Rank Approximation

Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E., & Woodruff, D. P. (2018). A PTAS for l p-Low Rank Approximation. Retrieved from http://arxiv.org/abs/1807.06101.

Item is

Basic

show hide
Genre: Paper
Latex : A {PTAS} for $\ell_p$-Low Rank Approximation
Other : A PTAS for $l_p$-Low Rank Approximation

Files

show Files
hide Files
:
arXiv:1807.06101.pdf (Preprint), 2MB
Name:
arXiv:1807.06101.pdf
Description:
File downloaded from arXiv at 2018-12-05 13:47 Accepted at SODA'19, 61 pages
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Ban, Frank1, Author
Bhattiprolu, Vijay1, Author
Bringmann, Karl2, Author           
Kolev, Pavel2, Author           
Lee, Euiwoong1, Author
Woodruff, David P.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              

Content

show
hide
Free keywords: Computer Science, Data Structures and Algorithms, cs.DS,Computer Science, Computational Complexity, cs.CC,Computer Science, Learning, cs.LG
 Abstract: A number of recent works have studied algorithms for entrywise $\ell_p$-low
rank approximation, namely, algorithms which given an $n \times d$ matrix $A$
(with $n \geq d$), output a rank-$k$ matrix $B$ minimizing
$\|A-B\|_p^p=\sum_{i,j}|A_{i,j}-B_{i,j}|^p$ when $p > 0$; and
$\|A-B\|_0=\sum_{i,j}[A_{i,j}\neq B_{i,j}]$ for $p=0$.
On the algorithmic side, for $p \in (0,2)$, we give the first
$(1+\epsilon)$-approximation algorithm running in time
$n^{\text{poly}(k/\epsilon)}$. Further, for $p = 0$, we give the first
almost-linear time approximation scheme for what we call the Generalized Binary
$\ell_0$-Rank-$k$ problem. Our algorithm computes $(1+\epsilon)$-approximation
in time $(1/\epsilon)^{2^{O(k)}/\epsilon^{2}} \cdot nd^{1+o(1)}$.
On the hardness of approximation side, for $p \in (1,2)$, assuming the Small
Set Expansion Hypothesis and the Exponential Time Hypothesis (ETH), we show
that there exists $\delta := \delta(\alpha) > 0$ such that the entrywise
$\ell_p$-Rank-$k$ problem has no $\alpha$-approximation algorithm running in
time $2^{k^{\delta}}$.

Details

show
hide
Language(s): eng - English
 Dates: 2018-07-162018-11-192018
 Publication Status: Published online
 Pages: 61 p.
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 1807.06101
URI: http://arxiv.org/abs/1807.06101
BibTex Citekey: Ban_arXiv1807.06101
 Degree: -

Event

show

Legal Case

show

Project information

show

Source

show