English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  New Calcium-Selective Smart Contrast Agents for Magnetic Resonance Imaging

Dhingra Verma, K., Forgács, A., Uh, H., Beyerlein, M., Maier, M., Petoud, S., et al. (2013). New Calcium-Selective Smart Contrast Agents for Magnetic Resonance Imaging. Chemistry - A European Journal, 19(52), 18011-18026. doi:10.1002/chem.201300169.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Dhingra Verma, K1, 2, Author           
Forgács, A, Author
Uh, H, Author
Beyerlein, Michael1, 2, Author           
Maier, ME, Author
Petoud, S, Author
Botta , M, Author
Logothetis, NK1, 2, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca2+ levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca2+ in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca2+-sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca2+ in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd3+-DO3A (DO3A=1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) coupled to a Ca2+ chelator o-amino phenol-N,N,O-triacetate (APTRA). The agents are designed to sense Ca2+ present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2–0.8 mM. The determined dissociation constant of the CAs to Ca2+ falls in the range required to sense and report changes in extracellular Ca2+ levels followed by an increase in neural activity. In buffer, with the addition of Ca2+ the increase in relaxivity ranged from 100–157 , the highest ever known for any T1-based Ca2+-sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb3+ analogues, nuclear magnetic relaxation dispersion (NMRD), and 17O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca2+ addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.

Details

show
hide
Language(s):
 Dates: 2013-12
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/chem.201300169
BibTex Citekey: DhingraVermaFUBMPBL2013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemistry - A European Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 19 (52) Sequence Number: - Start / End Page: 18011 - 18026 Identifier: -