Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?

Proix, T., Spiegler, A., Schirner, M., Rothmeier, S., Ritter, P., & Jirsa, V. K. (2016). How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? NeuroImage, 142, 135-149. doi:10.1016/j.neuroimage.2016.06.016.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Proix, Timothée1, Autor
Spiegler, Andreas1, Autor
Schirner, Michael2, Autor
Rothmeier, Simon2, Autor
Ritter, Petra2, 3, Autor           
Jirsa, Viktor K.1, Autor
Affiliations:
1Institut de Neurosciences des Systèmes, Aix-Marseille Université, France, ou_persistent22              
2Department of Neurology, Charité University Medicine Berlin, Germany, ou_persistent22              
3Minerva Research Group Brain Modes, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_751546              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Diffusion; Functional and structural MRI; The virtual brain; Large-scale brain network models; Parcellations; Short-range connectivity; SCRIPTS
 Zusammenfassung: Recent efforts to model human brain activity on the scale of the whole brain rest on connectivity estimates of large-scale networks derived from diffusion magnetic resonance imaging (dMRI). This type of connectivity describes white matter fiber tracts. The number of short-range cortico-cortical white-matter connections is, however, underrepresented in such large-scale brain models. It is still unclear on the one hand, which scale of representation of white matter fibers is optimal to describe brain activity on a large-scale such as recorded with magneto- or electroencephalography (M/EEG) or functional magnetic resonance imaging (fMRI), and on the other hand, to which extent short-range connections that are typically local should be taken into account. In this article we quantified the effect of connectivity upon large-scale brain network dynamics by (i) systematically varying the number of brain regions before computing the connectivity matrix, and by (ii) adding generic short-range connections. We used dMRI data from the Human Connectome Project. We developed a suite of preprocessing modules called SCRIPTS to prepare these imaging data for The Virtual Brain, a neuroinformatics platform for large-scale brain modeling and simulations. We performed simulations under different connectivity conditions and quantified the spatiotemporal dynamics in terms of Shannon Entropy, dwell time and Principal Component Analysis. For the reconstructed connectivity, our results show that the major white matter fiber bundles play an important role in shaping slow dynamics in large-scale brain networks (e.g. in fMRI). Faster dynamics such as gamma oscillations (around 40 Hz) are sensitive to the short-range connectivity if transmission delays are considered.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-11-062016-06-092016-06-302016-11-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.neuroimage.2016.06.016
PMID: 27480624
Anderer: Epub 2016
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: NeuroImage
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, FL : Academic Press
Seiten: - Band / Heft: 142 Artikelnummer: - Start- / Endseite: 135 - 149 Identifikator: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166