Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Polymer physics predicts the effects of structural variants on chromatin architecture

Bianco, S., Lupiáñez, D. G., Chiariello, A. M., Annunziatella, C., Kraft, K., Schöpflin, R., et al. (2018). Polymer physics predicts the effects of structural variants on chromatin architecture. Nature Genetics, 50(5), 662-667. doi:10.1038/s41588-018-0098-8.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Bianco.pdf (Verlagsversion), 2MB
Name:
Bianco.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
© 2018 Springer Nature Publishing AG
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bianco, Simona , Autor
Lupiáñez, Darío G., Autor
Chiariello, Andrea M. , Autor
Annunziatella, Carlo , Autor
Kraft, Katerina1, Autor           
Schöpflin, Robert1, Autor           
Wittler, Lars2, Autor           
Andrey, Guillaume , Autor
Vingron, Martin3, Autor           
Pombo, Ana, Autor
Mundlos, Stefan1, Autor           
Nicodemi, Mario , Autor
Affiliations:
1Research Group Development & Disease (Head: Stefan Mundlos), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433557              
2Dept. of Developmental Genetics (Head: Bernhard G. Herrmann), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1433548              
3Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society, ou_1479639              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer–promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-02-272018-04-162018-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41588-018-0098-8
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Genetics
  Andere : Nature Genet.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : Nature America, Inc.
Seiten: 6 Band / Heft: 50 (5) Artikelnummer: - Start- / Endseite: 662 - 667 Identifikator: ISSN: 1061-4036
CoNE: https://pure.mpg.de/cone/journals/resource/954925598609