Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
 ZurückNächste 
  Computing spatially resolved rotational hydration entropies from atomistic simulations.

Heinz, L. P., & Grubmüller, H. (2020). Computing spatially resolved rotational hydration entropies from atomistic simulations. Journal of Chemical Theory and Computation, 16(1), 108-118. doi:10.1021/acs.jctc.9b00926.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
3182317.pdf (Verlagsversion), 4MB
Name:
3182317.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
3182317_Suppl.pdf (Ergänzendes Material), 205KB
Name:
3182317_Suppl.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Heinz, L. P.1, Autor           
Grubmüller, H.1, Autor           
Affiliations:
1Department of Theoretical and Computational Biophysics, MPI for Biophysical Chemistry, Max Planck Society, ou_578631              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: For a first principles understanding of macromolecular processes, a quantitative understanding of the underlying free energy landscape and in particular its entropy contribution is crucial. The stability of biomolecules, such as proteins, is governed by the hydrophobic effect, which arises from competing enthalpic and entropic contributions to the free energy of the solvent shell. While the statistical mechanics of liquids, as well as molecular dynamics simulations have provided much insight, solvation shell entropies remain notoriously difficult to calculate, especially when spatial resolution is required. Here, we present a method that allows for the computation of spatially resolved rotational solvent entropies via a non-parametric k-nearest-neighbor density estimator. We validated our method using analytic test distributions and applied it to atomistic simulations of a water box. With an accuracy of better than 9.6%, the obtained spatial resolution should shed new light on the hydrophobic effect and the thermodynamics of solvation in general.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-12-102020
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jctc.9b00926
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Chemical Theory and Computation
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 16 (1) Artikelnummer: - Start- / Endseite: 108 - 118 Identifikator: -