Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

Spandan, V., Meschini, V., Ostilla-Monico, R., Lohse, D., Querzoli, G., de Tullio, M. D., et al. (2017). A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. Journal of Computational Physics, 348, 567-590. doi:10.1016/j.jcp.2017.07.036.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Spandan, V., Autor
Meschini, V., Autor
Ostilla-Monico, R., Autor
Lohse, Detlef1, Autor           
Querzoli, G., Autor
de Tullio, M. D., Autor
Verzicco, R., Autor
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Fluid-structure interaction; Spring networks; Liquid interfaces and membranes
 Zusammenfassung: In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-07-262017-11-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.jcp.2017.07.036
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Computational Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 348 Artikelnummer: - Start- / Endseite: 567 - 590 Identifikator: -