Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Simulating X‐ray absorption spectra with complete active space self‐consistent field linear response methods

Helmich-Paris, B. (2021). Simulating X‐ray absorption spectra with complete active space self‐consistent field linear response methods. International Journal of Quantum Chemistry, 121(3): e26559. doi:10.1002/qua.26559.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Helmich-Paris, Benjamin1, Autor           
Affiliations:
1Research Group Helmich-Paris, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541712              

Inhalt

einblenden:
ausblenden:
Schlagwörter: computational spectroscopy; linear response; multireference methods; X-ray absorption spectroscopy
 Zusammenfassung: In this work, two approaches for simulating X‐ray absorption (XA) spectra with the complete active space self‐consistent field (CASSCF) linear response (LR) method are introduced. The first approach employs the well‐known core‐valence separation (CVS) approximation, which is predominantly used by many other electronic structure methods for simulating X‐ray spectra. The second ansatz uses the harmonic Davidson algorithm for finding interior eigenvalues that lie close to a target excitation energy shift and virtually solves a shifted‐and‐inverted (S&I) generalized eigenvalue problem. LR‐CASSCF K‐edge transition energies are systematically blueshifted though have consistently smaller errors than those of the CAS or restricted active space (RAS) configuration interaction (CI) methods. For simple molecules at which the core hole can only be created at a single site, the state‐specific RASSCF or n‐electron valence second‐order perturbation theory/RASCI gave more accurate principal K‐edge excitation energies. If the core hole can be created at multiple sites, the LR‐CASSCF approaches perform much better than RASSCF. Moreover, we observed that the LR‐CASSCF variants were the only MR methods discussed here that predicted correctly the order of O K‐edge features in the ozone molecule and the permanganate ion. The peak separation of edge features in ozone was as accurate as with equation‐of‐motion coupled cluster singles and doubles. The error of the CVS approximation turned out to be very system dependent and in some cases amounted up to 1.0 eV for the K‐edge excitation energies. Those CVS errors are still acceptable if one considers the observed deviation from the experimental reference by 5–11 eV. The deviations made in the XAS intensities were even more pronounced. CVS and the full S&I oscillator strengths could differ even by a factor of 2.8. Since the S&I approach is at least as efficient as the LR‐CASSCF method for valence excitations, future endeavors to improve the accuracy by accounting for dynamic correlation could be built on top of the full S&I approach.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2020-04-142020-11-272021-02-05
 Publikationsstatus: Erschienen
 Seiten: 20
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/qua.26559
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal of Quantum Chemistry
  Kurztitel : Int. J. Quantum Chem.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : John Wiley & Sons, Inc.
Seiten: - Band / Heft: 121 (3) Artikelnummer: e26559 Start- / Endseite: - Identifikator: ISSN: 0020-7608
CoNE: https://pure.mpg.de/cone/journals/resource/954925407745