Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Direct observation of a uniaxial stress-driven Lifshitz transition in Sr2RuO4

Sunko, V., Abarca Morales, E., Marković, I., Barber, M. E., Milosavljević, D., Mazzola, F., et al. (2019). Direct observation of a uniaxial stress-driven Lifshitz transition in Sr2RuO4. npj Quantum Materials, 4(1): 46, pp. 1-7. doi:10.1038/s41535-019-0185-9.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Sunko, Veronika1, Autor           
Abarca Morales, Edgar1, Autor           
Marković, Igor1, Autor           
Barber, Mark E.1, Autor           
Milosavljević, Dijana1, Autor           
Mazzola, Federico2, Autor
Sokolov, Dmitry A.1, Autor           
Kikugawa, Naoki2, Autor
Cacho, Cephise2, Autor
Dudin, Pavel2, Autor
Rosner, Helge1, Autor           
Hicks, Clifford W.3, Autor           
King, Philip D. C.2, Autor
Mackenzie, Andrew P.4, Autor           
Affiliations:
1Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863462              
2External Organizations, ou_persistent22              
3Clifford Hicks, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863466              
4Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863463              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Pressure represents a clean tuning parameter for traversing the complex phase diagrams of interacting electron systems, and as such has proved of key importance in the study of quantum materials. Application of controlled uniaxial pressure has recently been shown to more than double the transition temperature of the unconventional superconductor Sr2RuO4, leading to a pronounced peak in Tc versus strain whose origin is still under active debate. Here we develop a simple and compact method to passively apply large uniaxial pressures in restricted sample environments, and utilise this to study the evolution of the electronic structure of Sr2RuO4 using angle-resolved photoemission. We directly visualise how uniaxial stress drives a Lifshitz transition of the γ-band Fermi surface, pointing to the key role of strain-tuning its associated van Hove singularity to the Fermi level in mediating the peak in Tc. Our measurements provide stringent constraints for theoretical models of the strain-tuned electronic structure evolution of Sr2RuO4. More generally, our experimental approach opens the door to future studies of strain-tuned phase transitions not only using photoemission but also other experimental techniques where large pressure cells or piezoelectric-based devices may be difficult to implement. © 2019, The Author(s).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-08-192019-08-19
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41535-019-0185-9
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: npj Quantum Materials
  Andere : npj Quantum Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: [London] : Nature Publishing Group
Seiten: - Band / Heft: 4 (1) Artikelnummer: 46 Start- / Endseite: 1 - 7 Identifikator: ISSN: 2397-4648
CoNE: https://pure.mpg.de/cone/journals/resource/2397-4648