English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc–Ti–Zr–Hf–Re system

Rogal, L., Ikeda, Y., Lai, M., Körmann, F., Kalinowska, A., & Grabowski, B. (2020). Design of a dual-phase hcp-bcc high entropy alloy strengthened by ω nanoprecipitates in the Sc–Ti–Zr–Hf–Re system. Materials and Design, 192: 108716. doi:10.1016/j.matdes.2020.108716.

Item is

Files

show Files
hide Files
:
1-s2.0-S0264127520302501-main.pdf (Publisher version), 3MB
Name:
1-s2.0-S0264127520302501-main.pdf
Description:
Open Access
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Rogal, Lukasz1, Author           
Ikeda, Yuji2, 3, Author           
Lai, Minjie4, Author           
Körmann, Fritz5, 6, Author           
Kalinowska, Alicja7, Author           
Grabowski, Blazej8, Author           
Affiliations:
1Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 30-059, Krakow, Poland, ou_persistent22              
2Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
3Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, ou_persistent22              
4Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xian 710072, Shaanxi, China, ou_persistent22              
5Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
6Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands, ou_persistent22              
7Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25, Reymonta Street, 30-059 Krakow, Poland, ou_persistent22              
8Institute of Materials Science, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany, ou_persistent22              

Content

show
hide
Free keywords: Compressive strength; Entropy; Hafnium alloys; High-entropy alloys; Microstructure; Precipitation (chemical); Scandium alloys; Titanium alloys; Zircaloy, Ab initio simulations; Body-centered cubic; Dual phase; Experimental investigations; Hexagonal close packed; Nanoprecipitates; Omega phase; Technological level, Rhenium alloys
 Abstract: High entropy alloys (HEAs) in the hexagonal close-packed (hcp) phase usually show poor mechanical properties. We demonstrate here, by use of ab initio simulations and detailed experimental investigations, that the mechanical properties can be improved by optimizing the microstructure. In particular we design a dual-phase HEA consisting of a body-centered cubic (bcc) matrix and hcp laths, with nanoprecipitates of the ω phase in the Sc-Ti-Zr-Hf-Re system, by controlling the Re content. This dedicated microstructure reveals, already in the as-cast state, high compressive strength and good ductility of 1910 MPa and 8, respectively. Our study lifts the hcp-based HEAs onto a competitive, technological level. © 2020 The Authors

Details

show
hide
Language(s): eng - English
 Dates: 2020-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.matdes.2020.108716
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : The research was supported by the Polish science financial resources The National Science Centre, Poland , project title: “Development of new high entropy alloys with dominant content of hexagonal solid solutions” project number: UMO-2014/15/D/ST8/02638 . Support from the Deutsche Forschungsgemeinschaft (SPP 2006), NWO / STW (VIDI grant 15707 ), and the European Research Council (ERC) under the EU's Horizon 2020 Research and Innovation Programme (Grant no. 639211 ) are also gratefully acknowledged.
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: Materials and Design
  Other : Materials & Design
  Abbreviation : Mater. Des.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Reigate, Surrey, Eng. : Elsevier
Pages: 7 Volume / Issue: 192 Sequence Number: 108716 Start / End Page: - Identifier: ISSN: 0264-1275
CoNE: https://pure.mpg.de/cone/journals/resource/954926234428