Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys

Abdelmawla, A., Hatem, T. M., & Ghoniem, N. M. (2018). Dislocation-based finite element modelling of hydrogen embrittlement in steel alloys. In Minerals, Metals and Materials Series (pp. 213-223). Springer International Publishing.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Abdelmawla, Amir1, Autor           
Hatem, Tarek M.2, 3, Autor           
Ghoniem, Nasr M.4, Autor           
Affiliations:
1Centre for Simulation Innovation and Advanced Manufacturing (SIAM), The British University in Egypt (BUE), El-Sherouk City, Cairo, Egypt, persistent22              
2Centre for Simulation Innovation and Advanced Manufacturing, The British University in Egypt, El-Sherouk City, Cairo, Egypt, persistent22              
3Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863381              
4Department of Mechanical and Aerospace Engineering, University of California at Los Angeles (UCLA), 420 Westwood Plaza, Los Angeles, CA, USA, persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Alloy steel; Atoms; Constitutive models; Finite element method; High strength alloys; High strength steel; Single crystals; Tensile testing, Catastrophic failures; Constitutive relations; Dislocation density model; Dislocation mobility; Effect of hydrogen; Finite element modelling; Hydrogen solutes; Mechanical behavior, Hydrogen embrittlement
 Zusammenfassung: Mechanical properties of many metals are greatly influenced by hydrogen solutes causing a well-known phenomenon of Hydrogen Embrittlement (HE). Hydrogen atoms affect the dislocation core, materials cohesion, and/or vacancies clustering causing the material capacity for plastic deformation to decrease. Such degradation in performance of metals leads to embrittlement resulting of catastrophic failure in structures. In this research, a physically-based constitutive model is developed to study hydrogen embrittlement in steel alloys. The developed model is an extension for Ghoniem-Matthews-Amodeo (GMA) dislocation-based model in order to predict the constitutive relation in the plastic regime for high strength steel alloys while considering hydrogen Effect on plasticity. The proposed physically-based dislocation-density model include the effect of hydrogen solute on dislocation mobility and interaction. The proposed model study the mechanical behavior of high-strength steel of HT-9 tensile test specimen. © The Minerals, Metals Materials Society 2018.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISBN: 9783319725253
DOI: 10.1007/978-3-319-72526-0_20
BibTex Citekey: Abdelmawla2018213
ISSN: 23671181
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: 147th Annual Meeting and Exhibition of the Minerals, Metals and Materials Society, TMS 2018
Veranstaltungsort: Phoenix, AZ, USA
Start-/Enddatum: 2018-03-11 - 2018-03-15

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Minerals, Metals and Materials Series
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Springer International Publishing
Seiten: - Band / Heft: Part F12 Artikelnummer: - Start- / Endseite: 213 - 223 Identifikator: -