Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Understanding and controlling the morphological complexity of biomembranes

Lipowsky, R. (2019). Understanding and controlling the morphological complexity of biomembranes. In Advances in Biomembranes and Lipid Self-Assembly (pp. 105-157). doi:10.1016/bs.abl.2019.10.002.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lipowsky, Reinhard1, Autor           
Affiliations:
1Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Constriction force, Curvature-induced division, Fine-tuned curvature, Gaint vesicle, Lipid bilayer, Membrane neck, Membrane tension, Multispherical shape, Nanovesicle, Tensionless leaflet
 Zusammenfassung: Biomimetic and biological membranes consist of lipid-protein bilayers in their fluid state. Because of their fluidity, these membranes can remodel both their molecular composition and their morphology in response to changes in their aqueous environments. Here, we will focus on morphological responses, motivated by recent experimental observations on giant vesicles. After a short reminder about curvature elasticity, two important recent developments will be described, the fine-tuning of the spontaneous curvature by membrane-bound proteins and the increased robustness of giant vesicles with spontaneously formed membrane nanotubes. The latter feature is intimately related to the concept of spontaneous membrane tension, which represents the intrinsic tension scale of curvature elasticity. Another important quantity, the mechanical membrane tension, is, in general, elusive to experimental studies of giant vesicles but can be determined in a quantitative manner by molecular simulations. One recent insight from such simulations is that it is important to distinguish tensionless bilayers from tensionless leaflets. In addition, using the stress profile obtained in the molecular simulations, we can obtain estimates for the curvature-elastic parameters. In the last part of the review, the framework of curvature elasticity is again taken up to further elucidate the morphological complexity of giant vesicles. Three aspects will be addressed: the stability of two-sphere vesicles with closed membrane necks; the curvature-induced constriction force acting on these necks, which can be used to cleave the necks and divide the vesicles in a controlled manner; and the striking polymorphism of multispheres generated by aqueous sucrose and glucose solutions.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-11-222019
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/bs.abl.2019.10.002
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Biomembranes and Lipid Self-Assembly
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 30 Artikelnummer: - Start- / Endseite: 105 - 157 Identifikator: ISSN: 2451-9634

Quelle 2

einblenden:
ausblenden:
Titel: Multiresponsive Behavior of Biomembranes and Giant Vesicles
Genre der Quelle: Buch
 Urheber:
Lipowsky, Reinhard1, Herausgeber           
Affiliations:
1 Reinhard Lipowsky, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863327            
Ort, Verlag, Ausgabe: Academic Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: ISBN: 978-012817483-8