English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  In-Si(111)(4 x 1)/(8 x 2) nanowires: Electron transport, entropy, and metal-insulator transition

Schmidt, W. G., Wippermann, S. M., Sanna, S., Babilon, M., Vollmers, N. J., & Gerstmann, U. (2012). In-Si(111)(4 x 1)/(8 x 2) nanowires: Electron transport, entropy, and metal-insulator transition. Physica Status Solidi B, 249(2), 343-359. doi:10.1002/pssb.201100457.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Schmidt, W. G.1, Author           
Wippermann, Stefan Martin2, Author           
Sanna, Simone3, Author           
Babilon, M.1, Author           
Vollmers, N. J.1, Author           
Gerstmann, Uwe1, Author           
Affiliations:
1Lehrstuhl für Theoretische Physik, Universität Paderborn, 33095 Paderborn, Germany, ou_persistent22              
2Chemistry Department, University of California, Davis, Davis CA 95616, USA, ou_persistent22              
3Department of Theoretical Physics, Paderborn University, 33095 Paderborn, Germany, ou_persistent22              

Content

show
hide
Free keywords: Charge-density wave; Electron transport; Entropy; In adsorption; Nanowire; Peierls transition; Si(111) surface
 Abstract: In this paper the recent experimental and theoretical progress in understanding the properties of the In-Si(111)(4 x 1)/(8 x 2) nanowire array a prototypical model system for exploring electron transport at the atomic scale is reviewed. Density functional theory (DFT) calculations illustrate how strongly structural, vibrational, and electronic properties of atomic-scale wires are intertwined. Numerical simulations of the nanowire optical response in comparison with recent measurements settle eventually the long-standing debate on the nanowire ground-state geometry in favor of hexagons. Soft phonon modes are found to transform the nanowire structurally between the insulating hexagon structure and metallic In zigzag chains. The subtle balance between the lower energy of the insulating phase and the larger vibrational entropy of the metallic wires is demonstrated to cause the temperature-dependent phase transition. The dynamic fluctuation model proposed earlier to explain the phase transition is shown to contradict the experimental information on the metal insulator transition of the nanowires. The influence of adatoms on the quantum transport and phase transition is discussed.

Details

show
hide
Language(s): eng - English
 Dates: 2012-02
 Publication Status: Issued
 Pages: 17
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000300696000014
DOI: 10.1002/pssb.201100457
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physica Status Solidi B
  Abbreviation : Phys. Stat. Sol. B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Weinheim : Wiley-VCH
Pages: - Volume / Issue: 249 (2) Sequence Number: - Start / End Page: 343 - 359 Identifier: ISSN: 0370-1972
CoNE: https://pure.mpg.de/cone/journals/resource/958480240330