English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes

Hengge, K., Heinzl, C., Perchthaler, M., Geiger, S., Mayrhofer, K. J. J., & Scheu, C. (2017). Growth of Porous Platinum Catalyst Structures on Tungsten Oxide Support Materials: A New Design for Electrodes. Crystal Growth & Design, 17(4), 1661-1668. doi:10.1021/acs.cgd.6b01663.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hengge, Katharina1, Author           
Heinzl, Christoph2, Author           
Perchthaler, Markus3, Author           
Geiger, Simon4, Author           
Mayrhofer, Karl J. J.4, Author           
Scheu, Christina1, 5, Author           
Affiliations:
1Nanoanalytics and Interfaces, Independent Max Planck Research Groups, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2054294              
2Elcore GmbH, Bayerwaldstr. 3, D-81737 München , ou_persistent22              
3Elcore GmbH, Bayerwaldstr. 3, D-81737 München, ou_persistent22              
4Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
5Materials Analytics, RWTH Aachen University, Kopernikusstrasse 10, Aachen, Germany, ou_persistent22              

Content

show
hide
Free keywords: MEMBRANE FUEL-CELLS; 3-DIMENSIONAL RECONSTRUCTION; DISCRETE TOMOGRAPHY; DEGRADATION; SIRT; NANOPARTICLES; NANOMATERIALS; TRANSITION; CRYSTALS; SURFACES;
 Abstract: The growth of a promising material system for high-temperature polymer-electrolyte-membrane-fuel, cells, namely, platinum-(Pt) loaded tungsten suboxide (WO3-x) electrodes, has been studied in-depth. The template-free twostep synthesis-results in highly porous three-dimensional networks of crystalline Pt nanorods on the WO3-x support. The formation, and growth behavior of these catalyst morphologies arc investigated as a function of the deposition time of the catalyst precursor by use of scanning electron microscopy and various transmission electron microscopy techniques. The analysis reveals that octahedral-shaped bulk crystals of the Pt-precursor are formed on the WO3-x support, which subsequently reduce during the thermal treatment. After a reduction time of 4 min, the core of the catalyst Morphologies is still bulk material, composed of Pt nanoparticles embedded in-a, reduced form of the Pt precursor, while the outer shell is formed by a porous network of polycrystalline Pt. Electron tomography helps to reveal the connectivity of the Pt network and allows calculation of the surface-area of a 100 nm X 100 nm portion. This is compared to the macroscopic value for the surface area of the samples' entire network obtained by cyclic voltammery.

Details

show
hide
Language(s): eng - English
 Dates: 2017-04-05
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: ISI: 000398884400029
DOI: 10.1021/acs.cgd.6b01663
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Crystal Growth & Design
  Other : Cryst. Growth Des.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: - Volume / Issue: 17 (4) Sequence Number: - Start / End Page: 1661 - 1668 Identifier: ISSN: 1528-7483
CoNE: https://pure.mpg.de/cone/journals/resource/110978984570353