Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Field-induced staggered moment stabilization in frustrated quantum magnets

Schmidt, B., Siahatgar, M., & Thalmeier, P. (2013). Field-induced staggered moment stabilization in frustrated quantum magnets. Journal of the Korean Physical Society, 62(10), 1499-1503. doi:10.3938/jkps.62.1499.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmidt, B.1, Autor           
Siahatgar, M.2, Autor           
Thalmeier, P.3, Autor           
Affiliations:
1Burkhard Schmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863464              
2Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863404              
3Peter Thalmeier, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863457              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: For low-dimensional frustrated quantum magnets, the dependence of the staggered moment on a magnetic field is nonmonotonic: For small and intermediate fields, quantum fluctuations are gradually suppressed, leading to an increase of the staggered moment as a function of the field strength. For large applied magnetic fields, the classically expected field dependence is recovered, namely a monotonous decrease with increasing field strength. The staggered moment is eventually suppressed when reaching the fully polarized state at the saturation field. The quantitative analysis of this behavior is an excellent tool to determine the frustration parameter of a magnetic compound. We have developed a general finite-size scaling scheme for numerical exact-diagonalization data of low-dimensional frustrated magnets, which we apply to the recently measured field dependence of the magnetic neutron scattering intensity of Cu(pz)(2)(ClO4)(2) in the framework of the S = 1/2 two-dimensional (2D) J (1)-J (2) Heisenberg model. We also apply linear spin-wave theory to complement our numerical findings. Our results show that Cu(pz)(2)(ClO4)(2) is a quasi-2D antiferromagnet with intermediate frustration J (2)/J (1) = 0.2.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013-05-28
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 668952
ISI: 000320122700030
DOI: 10.3938/jkps.62.1499
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of the Korean Physical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 62 (10) Artikelnummer: - Start- / Endseite: 1499 - 1503 Identifikator: ISSN: 0374-4884