Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae

Bizouard, M.-A., Maturana-Russel, P., Torres-Forne, A., Obergaulinger, M., Cerdá-Durán, P., Christensen, N., et al. (in preparation). Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2012.00846.pdf (Preprint), 930KB
Name:
2012.00846.pdf
Beschreibung:
File downloaded from arXiv at 2021-01-07 10:36
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bizouard, Marie-Anne, Autor
Maturana-Russel, Patricio, Autor
Torres-Forne, Alejandro1, Autor           
Obergaulinger, Martin, Autor
Cerdá-Durán, Pablo, Autor
Christensen, Nelson, Autor
Font, José A., Autor
Meyer, Renate, Autor
Affiliations:
1Computational Relativistic Astrophysics, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_2541714              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc, Astrophysics, Instrumentation and Methods for Astrophysics, astro-ph.IM
 Zusammenfassung: The eventual detection of gravitational waves from core-collapse supernovae
(CCSN) will help improve our current understanding of the explosion mechanism
of massive stars. The stochastic nature of the late post-bounce gravitational
wave signal due to the non-linear dynamics of the matter involved and the large
number of degrees of freedom of the phenomenon make the source parameter
inference problem very challenging. In this paper we take a step towards that
goal and present a parameter estimation approach which is based on the
gravitational waves associated with oscillations of proto-neutron stars (PNS).
Numerical simulations of CCSN have shown that buoyancy-driven g-modes are
responsible for a significant fraction of the gravitational wave signal and
their time-frequency evolution is linked to the physical properties of the
compact remnant through universal relations, as demonstrated in [1]. We use a
set of 1D CCSN simulations to build a model that relates the evolution of the
PNS properties with the frequency of the dominant g-mode, which is extracted
from the gravitational-wave data using a new algorithm we have developed for
our study. The model is used to infer the time evolution of a combination of
the mass and the radius of the PNS. The performance of the method is estimated
employing simulations of 2D CCSN waveforms covering a progenitor mass range
between 11 and 40 solar masses and different equations of state. Considering
signals embedded in Gaussian gravitational wave detector noise, we show that it
is possible to infer PNS properties for a galactic source using Advanced LIGO
and Advanced Virgo data at design sensitivities. Third generation detectors
such as Einstein Telescope and Cosmic Explorer will allow to test distances of
${\cal O}(100\, {\rm kpc})$.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-12-01
 Publikationsstatus: Keine Angabe
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 2012.00846
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: