English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Neurons in primary visual cortex encode naturalistic visual information using multiple temporal scales

Mazzoni, A., Kayser, C., Murayama, Y., Martinez, J., Quiroga, E., Logothetis, N., et al. (2010). Neurons in primary visual cortex encode naturalistic visual information using multiple temporal scales. Frontiers in Computational Neuroscience, 2010(Conference Abstract: Bernstein Conference on Computational Neuroscience). doi:10.3389/conf.fncom.2010.51.00101.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Mazzoni, A, Author
Kayser, C1, 2, 3, Author           
Murayama, Y2, 3, Author           
Martinez, J, Author           
Quiroga, EQ, Author
Logothetis, NK2, 3, Author           
Panzeri, S, Author           
Affiliations:
1Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497808              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Natural stimuli have a rich temporal structure, yet it is still unclear whether the encoding of such stimuli employs more than one response time scale. To investigate this issue, we analyzed the activity of neurons recorded in primary visual cortex of anesthetized macaques during presentation of naturalistic movies, and we quantified the amount of information carried by neural codes operating at different temporal scales. We divided the recording time into stimulus windows of tens of ms, and computed the information carried by the neural response about which stimulus window was being shown. Within each time window, responses were quantified using either the spike count, or using binary spike patterns, defined by the absence/presence of spikes within short time bins (t). We found that temporal spike patterns with precision t of 8 or 16 ms provided more stimulus information than spike counts, but this information gain did not increase further when reducing the bins size t. This suggests a response precision of single neurons on the scale of 8ms. In addition, we found that the joint knowledge of spike patterns and the phase of low frequency LFPs at which these patterns occurred - computed as in (Kayser et al. Neuron 2009) - carried more information than either code considered by itself. This suggests that the information carried by slow LFP fluctuations complements that carried by spike patterns.
In summary, we found evidence for complementary response time scales for the encoding of naturalistic stimuli in visual cortex. Informative codes range from spike timing precision at about 10 ms resolution to the much coarser phase of firing with respect to low frequency fluctuations. These findings indicate that sensory cortices may enhance their information capacity by multiplexing complementary information at different time scales.

Details

show
hide
Language(s):
 Dates: 2010-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.3389/conf.fncom.2010.51.00101
BibTex Citekey: MazzonikMMQLP2010
 Degree: -

Event

show
hide
Title: Bernstein Conference on Computational Neuroscience (BCCN 2010)
Place of Event: Berlin, Germany
Start-/End Date: 2010-09-27 - 2010-10-01

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Computational Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne : Frontiers Research Foundation
Pages: - Volume / Issue: 2010 (Conference Abstract: Bernstein Conference on Computational Neuroscience) Sequence Number: - Start / End Page: - Identifier: Other: 1662-5188
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5188