Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass

Autefage, H., Allen, F., Tang, H., Kallepitis, C., Gentleman, E., Reznikov, N., et al. (2019). Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass. Biomaterials, 209, 152-162. doi:10.1016/j.biomaterials.2019.03.035.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 3MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Autefage, H., Autor
Allen, F., Autor
Tang, H.M., Autor
Kallepitis, C., Autor
Gentleman, E., Autor
Reznikov, N., Autor
Nitiputri, K., Autor
Nommeots-Nomm, A., Autor
O'Donnell, M.D., Autor
Lange, Claudia1, Autor           
Seidt, Britta2, Autor           
Kim, T.B., Autor
Solanki, A.K., Autor
Tallia, F., Autor
Young, G., Autor
Lee, P.D., Autor
Pierce, B.F., Autor
Wagermaier, Wolfgang2, Autor           
Fratzl, Peter3, Autor           
Goodship, A., Autor
Jones, J.R., AutorBlunn, G., AutorStevens, M.M., Autor mehr..
Affiliations:
1Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863285              
2Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: 3D porous bioactive glass, Strontium-releasing materials, Raman spectroscopy, Critical-sized bone repair, FIB-SEM, SAXS
 Zusammenfassung: The efficient healing of critical-sized bone defects using synthetic biomaterial-based strategies is promising but
remains challenging as it requires the development of biomaterials that combine a 3D porous architecture and a
robust biological activity. Bioactive glasses (BGs) are attractive candidates as they stimulate a biological response
that favors osteogenesis and vascularization, but amorphous 3D porous BGs are difficult to produce
because conventional compositions crystallize during processing. Here, we rationally designed a porous,
strontium-releasing, bioactive glass-based scaffold (pSrBG) whose composition was tailored to deliver strontium
and whose properties were optimized to retain an amorphous phase, induce tissue infiltration and encourage
bone formation. The hypothesis was that it would allow the repair of a critical-sized defect in an ovine model
with newly-formed bone exhibiting physiological matrix composition and structural architecture. Histological
and histomorphometric analyses combined with indentation testing showed pSrBG encouraged near perfect
bone-to-material contact and the formation of well-organized lamellar bone. Analysis of bone quality by a
combination of Raman spectral imaging, small-angle X-ray scattering, X-ray fluorescence and focused ion beamscanning
electron microscopy demonstrated that the repaired tissue was akin to that of normal, healthy bone,
and incorporated small amounts of strontium in the newly formed bone mineral. These data show the potential
of pSrBG to induce an efficient repair of critical-sized bone defects and establish the importance of thorough
multi-scale characterization in assessing biomaterial outcomes in large animal models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2019-03-292019
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.biomaterials.2019.03.035
PMID: 0565
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomaterials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Guildford, England : Elsevier
Seiten: - Band / Heft: 209 Artikelnummer: - Start- / Endseite: 152 - 162 Identifikator: ISSN: 0142-9612