Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Computing Paths and Cycles in Biological Interaction Graphs

Klamt, S., & von Kamp, A. (2009). Computing Paths and Cycles in Biological Interaction Graphs. BMC Bioinformatics, 10, 181. doi:10.1186/1471-2105-10-181.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
432264_bmc_bioinfo_2009.pdf (Verlagsversion), 252KB
Name:
432264_bmc_bioinfo_2009.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Klamt, S.1, Autor           
von Kamp, A.1, Autor           
Affiliations:
1Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738139              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Background Interaction graphs (signed directed graphs) provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops) and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results w as possible) this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusions The calculation of shortest positive/negative paths and cycles in interaction graphs is an important method for network analysis in Systems Biology. This contribution draws the attention of the community to this important computational problem and provides a number of new algorithms, partially specifically tailored for biological interaction graphs. All algorithms have been implemented in the CellNetAnalyzer framework which can be downloaded for academic use at www.mpi-magdeburg.mpg.de/projects/cna/cna.html. © 2009 Klamt and von Kamp , licensee BioMed Central Ltd. [accessed June 29, 2009]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2009
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: eDoc: 432264
Anderer: 39/09
URI: http://www.biomedcentral.com/1471-2105/10/181
DOI: 10.1186/1471-2105-10-181
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: BMC Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 Artikelnummer: - Start- / Endseite: 181 Identifikator: -