Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A principled approach to conductivity uncertainty analysis in electric field calculations

Saturnino, G. B., Thielscher, A., Madsen, K. H., Knösche, T. R., & Weise, K. (2019). A principled approach to conductivity uncertainty analysis in electric field calculations. NeuroImage, 188, 821-834. doi:10.1016/j.neuroimage.2018.12.053.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Saturnino_2019.pdf (Verlagsversion), 8MB
Name:
Saturnino_2019.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Saturnino, Guilherme B.1, 2, Autor
Thielscher, Axel1, 2, Autor
Madsen, Kristoffer H.1, 3, Autor
Knösche, Thomas R.4, 5, Autor           
Weise, Konstantin6, 7, Autor           
Affiliations:
1Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark, ou_persistent22              
2Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark, ou_persistent22              
3Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark, ou_persistent22              
4Methods and Development Unit MEG and EEG: Signal Analysis and Modelling, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634559              
5Institute for Biomedical Engineering and Informatics, TU Ilmenau, Germany, ou_persistent22              
6Methods and Development Unit - MEG and Cortical Networks, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_2205650              
7Department of Advanced Electromagnetics, TU Ilmenau, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Non-invasive brain stimulation, Numerical methods, Sensitivity analysis, Transcranial magnetic stimulation, Transcranial direct current, stimulation, Uncertainty analysis
 Zusammenfassung: Uncertainty surrounding ohmic tissue conductivity impedes accurate calculation of the electric fields generated by non-invasive brain stimulation. We present an efficient and generic technique for uncertainty and sensitivity analyses, which quantifies the reliability of field estimates and identifies the most influential parameters. For this purpose, we employ a non-intrusive generalized polynomial chaos expansion to compactly approximate the multidimensional dependency of the field on the conductivities. We demonstrate that the proposed pipeline yields detailed insight into the uncertainty of field estimates for transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), identifies the most relevant tissue conductivities, and highlights characteristic differences between stimulation methods. Specifically, we test the influence of conductivity variations on (i) the magnitude of the electric field generated at each gray matter location, (ii) its normal component relative to the cortical sheet, (iii) its overall magnitude (indexed by the 98th percentile), and (iv) its overall spatial distribution. We show that TMS fields are generally less affected by conductivity variations than tDCS fields. For both TMS and tDCS, conductivity uncertainty causes much higher uncertainty in the magnitude as compared to the direction and overall spatial distribution of the electric field. Whereas the TMS fields were predominantly influenced by gray and white matter conductivity, the tDCS fields were additionally dependent on skull and scalp conductivities. Comprehensive uncertainty analyses of complex systems achieved by the proposed technique are not possible with classical methods, such as Monte Carlo sampling, without extreme computational effort. In addition, our method has the advantages of directly yielding interpretable and intuitive output metrics and of being easily adaptable to new problems.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-12-052018-10-242018-12-262018-12-272019-03
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.neuroimage.2018.12.053
PMID: 30594684
PII: S1053-8119(18)32203-1
Anderer: Epub ahead of print
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : -
Grant ID : WE 59851/1
Förderprogramm : -
Förderorganisation : German Science Foundation (DFG)
Projektname : -
Grant ID : R118-A11308
Förderprogramm : -
Förderorganisation : Lundbeckfonden
Projektname : -
Grant ID : NNF14OC0011413
Förderprogramm : -
Förderorganisation : Novo Nordisk fonden

Quelle 1

einblenden:
ausblenden:
Titel: NeuroImage
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, FL : Academic Press
Seiten: - Band / Heft: 188 Artikelnummer: - Start- / Endseite: 821 - 834 Identifikator: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166