English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Motion parallax links visual motion areas and scene regions

Schindler, A., & Bartels, A. (2016). Motion parallax links visual motion areas and scene regions. NeuroImage, 125, 803-812. doi:10.1016/j.neuroimage.2015.10.066.

Item is

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Schindler, A1, 2, Author           
Bartels, A1, 2, Author           
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: When we move, the retinal velocities of objects in our surrounding differ according to their relative distances and give rise to a powerful three-dimensional visual cue referred to as motion parallax. Motion parallax allows us to infer our surrounding's 3D structure as well as self-motion based on 2D retinal information. However, the neural substrates mediating the link between visual motion and scene processing are largely unexplored. We used fMRI in human observers to study motion parallax by means of an ecologically relevant yet highly controlled stimulus that mimicked the observer's lateral motion past a depth-layered scene. We found parallax selective responses in parietal regions IPS3 and IPS4, and in a region lateral to scene selective occipital place area (OPA). The traditionally defined scene responsive regions OPA, the para-hippocampal place area (PPA) and the retrosplenial cortex (RSC) did not respond to parallax. During parallax processing, the occipital parallax selective region entertained highly specific functional connectivity with IPS3 and with scene selective PPA. These results establish a network linking dorsal motion and ventral scene processing regions specifically during parallax processing, which may underlie the brain's ability to derive 3D scene information from motion parallax.

Details

show
hide
Language(s):
 Dates: 2016-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.neuroimage.2015.10.066
BibTex Citekey: SchindlerB2015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NeuroImage
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 125 Sequence Number: - Start / End Page: 803 - 812 Identifier: -