English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase

Zeuzem, S., Zimmermann, P., & Schulz, I. (1992). Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase. Journal of Membrane Biology, 125(3), 231-241. doi:10.1007/BF00236436.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zeuzem, Stefan1, Author           
Zimmermann, Petra1, Author           
Schulz, Irene1, Author           
Affiliations:
1Department of Physiology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068297              

Content

show
hide
Free keywords: ras-related GTP-binding proteins; ADP-ribosylation factor; proton pump; bafilomycin; GTP-binding blots
 Abstract: Evidence suggests that certain ras-related small molecular weight GTP-binding proteins (smg-proteins) are involved in intracellular membrane trafficking and vesicle fusion. We have previously shown that intravesicular acidification due to a vacuolar-type H+-ATPase, which is Cl- dependent and highly sensitive to the specific inhibitor bafilomycin, enhances GTP-induced fusion of pancreatic microsomal vesicles (Hampe, W., Zimmermann, P., Schulz, I. 1990. FEBS Lett. 271:62-66). This process may involve function of smg-proteins. The present study shows that MgATP (2 mM), but neither MgATP gamma S nor ATP in the absence of Mg2+, increases association of 19- and 21-kDa smg-proteins to the vesicle membrane as monitored by their [ alpha-32P]GTP binding. The affinity of smg-proteins for [ alpha-32P]GTP was not altered by MgATP. Bafilomycin B1 (10-8 M), the protonophore CCCP (10-5) M), and replacement of Cl- in the incubation buffer by CH3COO- or NO3- resulted in an almost complete inhibition of the MgATP-dependent association of the 19- and 21-kDa smg-proteins to the vesicle membranes. Furthermore, the MgATP effect on both smg-proteins was found to be due to the intravesicular pH and not to the H+ gradient over the vesicle membrane. We conclude that association of a 19-kDa (immunologically identified as the ADP-ribosylation factor, arf) and a yet unidentified 21-kDa GTP-binding protein to vesicle membranes is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase.

Details

show
hide
Language(s): eng - English
 Dates: 1001-08-011991-05-011992-02-01
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/BF00236436
PMID: 1532619
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Membrane Biology
  Other : J. Membr. Biol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Springer-Verlag New York
Pages: - Volume / Issue: 125 (3) Sequence Number: - Start / End Page: 231 - 241 Identifier: ISSN: 0022-2631
CoNE: https://pure.mpg.de/cone/journals/resource/954925415943